ReferencesAblowitz, M. J., and Segur, H. (1981). Solitons and the Inverse Scattering Transform. Vol. 4. Philadelphia: SIAM.
Aki, K., and Richards, P. G. (2002). Quantitative Seismology. 2nd edn. Sausalito, CA: University Science Books.
Allègre, C. J., Le Mouel, J. L., and Provost, A. (1982). Scaling rules in rock fracture and possible implications for earthquake prediction. Nature, 297 (May), 47–49.
Arfken, G. B., and Weber, H. J. (2005). Mathematical Methods for Physicists. 6th edn. Burlington, MA: Elsevier Academic Press.
Aris, R. (1989). Vectors, Tensors, and the Basic Equations of Fluid Mechanics. New York: Dover Publications.
Bak, P. (1996). How Nature Works: the Science of Self-organized Criticality. New York: Copernicus.
Batchelor, G. K. (1953). The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press.
Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.
Ben-Menahem, A., and Singh, S. J. (2000). Seismic Waves and Sources. 2nd edn. Mineola, NY: Dover Publications.
Boas, M. L. (2006). Mathematical Methods in the Physical Sciences. 3rd edn. Hoboken, NJ: Wiley.
Bullen, K. E, and Bolt, B. A. (1985). An Introduction to the Theory of Seismology. 4th edn. Cambridge: Cambridge University Press.
Burridge, R., and Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341–371.
Butt, R. (2007). Introduction to Numerical Analysis using MATLAB. Hingham, MA: Infinity Science Press.
Carmichael, R. S. (1989). Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton, FL: CRC Press.
Carmo, M. P. do (1976). Differential Geometry of Curves and Surfaces. Englewood Cliffs, NJ: Prentice-Hall.
Chadwick, P. (1999). Continuum Mechanics: Concise Theory and Problems. 2nd corrected and enlarged edn. Mineola, NY: Dover Publications, Inc.
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. New York: Dover Publications.
Chandrasekhar, S. (1995). Newton's Principia for the Common Reader. Oxford: Clarendon Press.
Cole, J. D. (1951). On a quasilinear parabolic equation occurring in aerodynamics. Quarterly of Applied Mathematics, 9, 225–236.
Drazin, P. G. (1992). Nonlinear Systems. Cambridge: Cambridge University Press.
Drazin, P. G. (2002). Introduction to Hydrodynamic Stability. Cambridge: Cambridge University Press.
Drazin, P. G., and Johnson, R. S. (1989). Solitons: an Introduction. Cambridge: Cambridge University Press.
Drazin, P. G., and Reid, W. H. (2004). Hydrodynamic Stability. 2nd edn. Cambridge: Cambridge University Press.
Dummit, D. S., and Foote, R. M. (2004). Abstract Algebra. 3rd edn. Hoboken, NJ: Wiley.
Faber, T. E. (1995). Fluid Dynamics for Physicists. Cambridge: Cambridge University Press.
Feder, J. (1988). Fractals. New York: Plenum Press.
Fowler, A. (2011). Mathematical Geoscience. 1st edn. Interdisciplinary applied mathematics, vol. 36. New York: Springer.
Fox, L. (1962). Numerical Solution of Ordinary and Partial Differential Equations: Based on a Summer School held in Oxford, August–September 1961. Proceedings of summer schools organised by the Oxford University Computing Laboratory and the Delegacy for Extra-mural Studies, vol. 1. Oxford: Pergamon Press.
Fröberg, C. E. (1985). Numerical Mathematics: Theory and Computer Applications. Menlo Park, CA: Benjamin/Cummings Pub. Co.
Fung, Y. S. (1965). Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, Inc.
Gabrielov, A., Newman, W. I., and Turcotte, D. L. (1999). Exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling. Physical Review E, 60 (Nov.), 5293–5300.
Gabrielov, A., Zaliapin, I., Newman, W. I., and Keilis-Borok, V. I. (2000a). Colliding cascades model for earthquake prediction. Geophysical Journal International, 143 (Nov.), 427–437.
Gabrielov, A., Keilis-Borok, V., Zaliapin, I., and Newman, W. I. (2000b). Critical transitions in colliding cascades. Physical Review E, 62 (July), 237–249.
Gantmakher, F. R. (1959). The Theory of Matrices. New York: Chelsea Pub. Co.
Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall series in automatic computation. Englewood Cliffs, NJ: Prentice-Hall.
Ghil, M., and Childress, S. (1987). Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Applied mathematical sciences, vol. 60. New York: Springer-Verlag.
Gill, A. E. (1982). Atmosphere–Ocean Dynamics. New York: Academic Press.
Goldstein, H., Poole, C. P, and Safko, J. L. (2002). Classical Mechanics. 3rd edn. San Francisco: Addison Wesley.
Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. Vol. 158. New York: Academic Press.
Helmholtz, H. von (1868). On the facts underlying geometry. Abhandlunger der Königlicher Gesellschaft der Wìsserschafter zu Göttinger. Vol. 15.
Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms. 2nd edn. Philadelphia: Society for Industrial and Applied Mathematics.
Holton, J. R. (2004). An Introduction to Dynamic Meteorology. 4th edn. Vol. 88. Burlington, MA: Elsevier Academic Press.
Hopf, E. (1950). The partial differential equation ut + uux = µxx. Communicators or Pure and Applied Mathematics, 3, 201–230.
Houghton, J.T. (2002). The Physics of Atmospheres. 3rd edn. Cambridge: Cambridge University Press.
Jackson, J. D. (1999). Classical Electrodynamics. 3rd edn. New York: Wiley.
Jensen, H. J. (1998). Self-organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Vol. 10. Cambridge: Cambridge University Press.
Johnson, C. (2009). Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover books on mathematics. Mineola, NY: Dover Publications.
Kagan, Y. Y., and Knopoff, L. (1980). Spatial distribution of earthquakes: the two-point distribution problem. Geophysical Journal, 62, 303–320.
Kasahara, K. (1981). Earthquake Mechanics. Cambridge Earth Science Series. Cambridge: Cambridge University Press.
Kennett, B. L. N. (1983). Seismic Wave Propagation in Stratified Media. Cambridge: Cambridge University Press.
Kincaid, D., and Cheney, E. W. (2009). Numerical Analysis: Mathematics of Scientific Computing. 3rd edn. The Sally series, vol. 2. Providence, RI: American Mathematical Society.
Knopoff, L., and Newman, W. I. (1983). Crack fusion as a model for repetitive seismicity. Pure and Applied Geophysics, 121 (May), 495–510.
Landau, L. D., and Lifshitz, E.M. (1987). Fluid Mechanics. 2nd edn. Course of Theoretical Physics, vol. 6. Oxford, England: Pergamon Press.
Landau, L. D., Lifshitz, E. M., Kosevich, A. M., and Pitaevskiĭ, L. P. (1986). Theory of Elasticity. 3rd edn. Course of Theoretical Physics, vol. 7. Oxford: Pergamon Press.
Lawn, B. R. (1993). Fracture of Brittle Solids. 2nd edn. Cambridge: Cambridge University Press.
Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. Updated and augmented edn. New York: W. H. Freeman.
Marshall, J., and Plumb, R. A. (2008). Atmosphere, Ocean, and Climate Dynamics: an Introductory Text. Vol. 93. Amsterdam: Elsevier Academic Press.
Mase, G. E., and Mase, G. T. (1990). Continuum Mechanics for Engineers. Boca Raton, FL: CRC Press.
Mathews, J., and Walker, R. L. (1970). Mathematical Methods of Physics. 2nd edn. New York: W. A. Benjamin.
McKelvey, J. P. (1984). Simple transcendental expressions for the roots of cubic equations. American Journal of Physics, 52(3), 269–270.
Millman, R. S., and Parker, G. D. (1977). Elements of Differential Geometry. Englewood Cliffs, NJ: Prentice-Hall.
Morse, P. M., and Feshbach, H. (1953). Methods of Theoretical Physics. International series in pure and applied physics. New York: McGraw-Hill.
Müser, M. H., Wenning, L., and Robbins, M. O. (2001). Simple microscopic theory of Amontons's laws for static friction. Physical Review Letters, 86(7), 1295–1298.
Narasimhan, M. N. L. (1993). Principles of Continuum Mechanics. New York: Wiley.
Newman, W. I. (2000). Inverse cascade via Burgers equation. Chaos, 10 (June), 393–397.
Newman, W. I., and Knopoff, L. (1982). Crack fusion dynamics: A model for large earthquakes. Geophysical Research Letters, 9, 735–738.
Newman, W. I., and Knopoff, L. (1983). A model for repetitive cycles of large earthquakes. Geophysical Research Letters, 10 (Apr.), 305–308.
Newman, W. I., and Turcotte, D. L. (2002). A simple model for the earthquake cycle combining self-organized complexity with critical point behavior. Nonlinear Processes in Geophysics, 9, 453–461.
Nickalls, R. W. D. (1993). A new approach to solving the cubic; Cardan's solution revealed. The Mathematical Gazette, 77(480), 354–359.
Oertel, G. F. (1996). Stress and Deformation: a Handbook on Tensors in Geology. New York: Oxford University Press.
Pedlosky, J. (1979). Geophysical Fluid Dynamics. New York: Springer Verlag.
Peitgen, H.-O., Saupe, D., and Barnsley, M. F. (1988). The Science of Fractal Images. New York: Springer-Verlag.
Peyret, R. (2000). Handbook of Computational Fluid Mechanics. San Diego, CA: Academic Press.
Peyret, R., and Taylor, T. D. (1990). Computational Methods for Fluid Flow. Corr. 3rd print edn. New York: Springer-Verlag.
Pope, S. B. (2000). Turbulent Flows. Cambridge: Cambridge University Press.
Press, F., and Siever, R. (1986). Earth. 4th edn. New York: W. H. Freeman.
Reid, H. F. (1911). The elastic-rebound theory of earthquakes. Bulletin of the Department of Geology, University of California Publications, 6(19), 413–444.
Richtmyer, R. D., and Morton, K. W. (1967). Difference Methods for Initial-value Problems. 2nd edn. Interscience tracts in pure and applied mathematics, vol. 4. New York: Interscience Publishers.
Schiesser, W. E. (1991). The Numerical Method of Lines: Integration of Partial Differential Equations. San Diego: Academic Press.
Scholz, C. H. (2002). The Mechanics of Earthquakes and Faulting. 2nd edn. Cambridge: Cambridge University Press.
Schubert, G., Turcotte, D. L., and Olson, P. (2001). Mantle Convection in the Earth and Planets. Cambridge: Cambridge University Press.
Schutz, B. F. (1980). Geometrical Methods of Mathematical Physics. Cambridge: Cambridge University Press.
Segall, P. (2010). Earthquake and Volcano Deformation. Princeton, NJ: Princeton University Press.
Segel, L. A., and Handelman, G. H. (1987). Mathematics Applied to Continuum Mechanics. New York: Dover Publications.
Shearer, P. M. (2009). Introduction to Seismology. 2nd edn. Cambridge: Cambridge University Press.
Sleep, N. H., and Fujita, K. (1997). Principles of Geophysics. Malden, MA: Blackwell Science.
Spencer, A. J. M. (1980). Continuum Mechanics. Longman mathematical texts. London: Longman.
Stauffer, D., and Aharony, A. (1994). Introduction to Percolation Theory. Rev., 2nd edn. London: Taylor and Francis.
Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Reading, MA: Addison-Wesley Pub.
Tennekes, H., and Lumley, J. L. (1972). A First Course in Turbulence. Cambridge, MA: MIT Press.
Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophysics. 2nd edn. Cambridge: Cambridge University Press.
Turcotte, D. L., and Schubert, G. (2002). Geodynamics. 2nd edn. Cambridge: Cambridge University Press.
Vallis, G. K. (2006). Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Largescale Circulation. Cambridge: Cambridge University Press.
Van Dyke, M. (1982). An Album of Fluid Motion. Stanford, CA: The Parabolic Press.
Whitham, G. B. (1974). Linear and Nonlinear Waves. Pure and applied mathematics. New York: Wiley.