Skip to main content Accessibility help
×
  • Cited by 17
Publisher:
Cambridge University Press
Online publication date:
March 2015
Print publication year:
2015
Online ISBN:
9780511980251

Book description

An Introduction to Space Plasma Complexity considers select examples of complexity phenomena related to observed plasma processes in the space environment, such as those pertaining to the solar corona, the interplanetary medium, and Earth's magnetosphere and ionosphere. This book provides a guided tour of the ideas behind forced and/or self-organized criticality, intermittency, multifractals, and the theory of the dynamic renormalization group, with applications to space plasma complexity. There is much to be explored and studied in this relatively new and developing field. Readers will be able to apply the concepts and methodologies espoused in this introduction to their own research interests and activities.

Reviews

'… the book is both readable and authoritative. It is written by an expert practitioner and provides a challenging and rewarding read for students as well as for professionals …'

Terry Robinson Source: The Observatory

'[An Introduction to Space Plasma Complexity] will be primarily of special interest to students and researchers in the field of space plasma to learn how ideas coming from the theory of complexity can be applied and explain some complex phenomena occurring in the space plasma environment. Nevertheless, I believe it can be also useful for theoretical physicists and applied mathematicians interested in the applications of ideas of non-linear dynamics, statistical physics and complex systems to a field which is not sufficiently well known.'

Miguel A. F. Sanjuán Source: Contemporary Physics

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References

Alexandrova, O., Solar wind vs. magnetosheath turbulence and Alfvén vortices, Nonlinear Processes in Geophysics 15, p. 95, 2008.
Alexandrova, O., and J. Saur, Alfvén vortices in Saturn’s magnetosheath: Cassini observations, Geophys. Res. Lett. 35, doi:10/1029/2008/GL034411, 2008.
Alexandrova, O., A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J. M. Bosqued, and M. André, Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock, J. Geophys. Res. 111, A12208, doi:10.1029/2006JA011934, 2006.
Angelopoulos, V., T. Mukai, and S. Kokubun, Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality, Phys. Plasmas 6, p. 4161, 1999.
Angelopoulos, V., F. S. Mozer, J. Bonnell, M. Temerin, M. Somoza, W. K. Peterson, H. L. Collin, and B. Giles, Wave power studies of cusp crossings with the Polar satellite, J. Geophys. Res. 106, p. 5987, 2001.
Arimitsu, T., and N. Arimitsu, Analysis of fully developed turbulence by a generalized statistics, Prog. Theor. Phys. 105, p. 355, 2001.
Arimitsu, T., and N. Arimitsu, Analysis of fully developed turbulence in terms of Tsallis statistics, Phys. Rev. E 61, p. 3237, 2000a
Arimitsu, T., and N. Arimitsu, Tsallis statistics and fully developed turbulence, J. Phys. A (Math. Gen) 33, L235, 2000b.
Aschwanden, M. J., ed., Self-organized Criticality Systems, Open Academic Press, Berlin and Warsaw, 2013.
Bacry, E., J. F. Muzy, and A. Arnéodo, Singularity spectrum of fractal signals from wavelet analysis: exact results, J. Stat. Phys. 70, p. 635, 1993.
Bak, P., K. Chen, and C. Tang, A forest-fire model and some thoughts on turbulence, Phys. Lett. A 147, p.297, 1990.
Bak, P., C. Tang, and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, p. 381, 1987.
Bak, P., C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38, p. 364, 1988.
Baker, D. N., A. J. Klimas, R. L. McPherson, and J. Büchner, The evolution from weak to strong geomagnetic activity: An interpretation in terms of deterministic chaos. Geophys. Res. Lett. 17, p. 41, 1990.
Beck, C., Application of generalized thermostatistics to fully developed turbulence, Physica A 277, p. 115, 2000.
Beck, C., and F. Schlögl, Thermodynamics of Chaotic Systems: An Introduction, Cambridge University Press, Cambridge, 1993.
Becker, T., H. Devries, and B. Eckhardt, Dynamics of a stochastically driven running sandpile, J. Nonlinear Sci. 5, p. 167, 1995.
Benzi, R., S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. Succi, Extended self-similarity in turbulent flows, Phys. Rev. E 48, p. R29, 1993.
Biskamp, D., Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, 1993.
Biskamp, D., Magnetohydrodynamic Turbulence, Cambridge University Press, Cambridge, 2003.
Bonnell, J., P. Kintner, J.-E. Wahlund, K. Lynch, and R. Arnoldy, Interferometric determination of broadband ELF wave phase velocity within a region of transverse auroral ion acceleration, Geophys. Res. Lett. 23, p. 3297, 1996.
Bruno, R., B. Bavassano, E. Pietropaolo, V. Carbone, and P. Veltri P, Effects of intermittency on interplanetary velocity and magnetic field fluctuations anisotropy, Geophys. Res. Lett. 26, p. 3185, 1999.
Bruno, R., V. Carbone, P. Veltri, E. Pietropaolo, and B. Bavassano, Identifying intermittency events in the solar wind, Planetary Space Sci. 49, p. 1201, 2001.
Bruno, R., V. Carbone, S. Chapman, B. Hnat, A. Noullez, and L. Sorriso-Valvo, Intermittent character of interplanetary magnetic field fluctuations, Phys. Plasmas 14, 032901, 2007.
Burlaga, L. F., Intermittent turbulence in the solar wind, J. Geophys. Res. 96, p. 5847, 1991a.
Burlaga, L. F., Multifractal structure of the interplanetary magnetic field: Voyager 2 observations near 25 AU. 1987–1988, Geophys. Res. Lett. 18, p. 69, 1991b.
Burlaga, L. F., Multifractal structure of speed fluctuations in recurrent streams at 1AU and near 6 AU, Geophys. Res. Lett. 18, p. 1651, 1991c.
Burlaga, L. F., Intermittent turbulence in large-scale velocity fluctuations at 1 AU near solar maximum, J. Geophys. R. 98, p. 17467, 1993.
Carbone, V., Cascade model for intermittency in fully developed magnetohydrodynamic turbulence, Phys. Rev. Lett. 71, p. 1546, 1993.
Carbone, V., Scaling exponents of the velocity structure functions in the interplanetary medium. Ann. Geophys. 12, p. 585, 1994.
CarboneV., and R. Bruno, Cancellation exponents and multifractal scaling laws in the solar wind magnetohydrodynamic turbulence, Ann. Geophys. 14, p. 777, 1996.
Carbone, V., R. Bruno, and P. Veltri, Evidence for extended self-similarity in hydromagnetic turbulence. Geophys. Res. Lett. 23, p. 121, 1996.
Carbone, V., P. Veltri, and R. Bruno, Experimental evidence for differences in the extended self-similarity scaling laws between fluid and magnetohydrodynamic turbulent flows, Phys. Rev. Lett. 75, p. 3110, 1995.
Castaing, B., Y. Gagne, and E. J. Hopfinger, Velocity probability density functions of high Reynolds number turbulence, Physica D 46, p. 177, 1990.
Chang, T., Low-dimensional behavior and symmetry breaking of stochastic systems near criticality – Can these effects be observed in space and in the laboratory?IEEE Trans. Plasma Science 20, p. 691, 1992.
Chang, T., Sporadic localized reconnections and multiscale intermittent turbulence in the magnetotail. In Geospace Mass and Energy Flow, edited by J. L. Horwitz, D. I. Gallagher, and W. K. Peterson, Geophysical Monograph 104, AGU, Washington, DC, p. 193, 1998.
Chang, T., Self-organized criticality, multifractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Physics of Plasmas 6, p. 4137, 1999.
Chang, T., An example of resonances, coherent structures and topological phase transitions – the origin of the low frequency broadband spectrum in the auroral zone, Nonlinear Processes in Geophysics 8, p. 175, 2001a.
Chang, T., Colloid-like behavior and topological phase transitions in space plasmas: intermittent low frequency turbulence in the auroral zone, Physica Scripta T89, p. 80, 2001b.
Chang, T., Dynamical complexity in space plasmas, in Encyclopedia of Complexity and Systems Science, Editor in Chief, R. A. Meyers, doi: 10.1007/978-0-387-30440-3_510, Springer, New York, 2009.
Chang, T., and C. C. Wu, Dynamical complexity, intermittent turbulence, coarse-grained dissipation, criticality and multifractal processes, in Turbulence and Nonlinear Processes in Astrophysical Plasmas, edited by D. Shaikh and G. Zank, AIP Proc, American Institute of Physics, Melville, NY, 932, p. 161, 2007.
Chang, T., and C. C. Wu, Rank-ordered multifractal spectrum for intermittent fluctuations, Phys. Rev. E 77, 045401(R), doi:10.1103/PhysRevE.77.045401, 2008.
Chang, T., A. Hankey, and H. E. Stanley, Generalized scaling hypothesis in multicomponent systems. 1. Classification of critical points by order and scaling at tricriical points, Phys. Rev. B 8, p. 346, 1973.
Chang, T., J. F. Nicoll, and J. E. Young, A closed-form differential renormalization-group generator for critical dynamics, Phys. Lett. 67A, p. 287, 1978.
Chang, T., S. W. Y. Tam, and C. C. Wu, Complexity induced anisotropic bimodal intermittent turbulence in space plasmas, Phys. Plasmas 11, p. 1287, 2004.
Chang, T., S. W. Y. Tam, and C. C. Wu, Complexity in space plasmas – a brief review, Space Sci. Rev. 122, p. 281, 2006.
Chang, T., D. D. Vvedensky, and J. F. Nicoll, Differential renormalization-group generators for static and dynamic critical phenomena, Phys. Reports, 217, p. 279, 1992.
ChangT., S. W. Y. Tam, C. C. Wu, and G. Consolini, Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas. Space Sci. Rev. 107, p. 425, 2003.
Chang, T., C. C. Wu, J. Podesta, M. Echim, H. Lamy, and S. W. Y. Tam, ROMA (rank-ordered multifractal analyses) of intermittency in space plasmas – a brief tutorial review, Nonlinear Processes in Geophysics 17, p. 545, 2010.
Chapman, S. C., R. O. Dendy, and G. Rowlands, A sandpile model with dual scaling regimes for laboratory, space, and astrophysical plasmas. Phys. Plasmas 6, p. 4169, 1999.
Chapman, S. C., N. W. Watkins, R. O. Dendy, P. Helander, and G. Rowlands, A simple avalanche model as an analogue for the magnetospheric activity, Geophys. Res. Lett. 25, p. 2397, 1998.
Christensen, K., H. Flyvbjerg, and Z. Olami, Self-organized critical forest-fire model: Mean-field theory and simulation results in 1 to 6 dimensions, Phys. Rev. Lett. 71, p. 2737, 1993.
Clar, S., B. Drossel, and F. Schwabl, Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E. 50, p. 1009, 1994.
Consolini, G., Sandpile cellular automata and the magnetospheric dynamics, in Cosmic Physics in the Year 2000, edited by S. Aiello, N. Iucci, G. Sironi, A. Treves, and U. Villante, Proc VIII GIFCO Conference, Società Italiana di Fisica, Bologna, p. 123, 1997.
Consolini, G., and T. Chang, Magnetic field topology and criticality in geotail dynamics: Relevance to substorm phenomena, Space Sci. Rev. 95, p. 309, 2001.
Consolini, G., and T. Chang, Complexity, magnetic field topology, criticality, and metastability in magnetotail dynamics, J. Atmos. Solar-Terrestrial Phys. 64, p. 541, 2002.
Consolini, G., and P. De Michelis, A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth’s magnetosphere, J. Atmos. Solar-Terrestrial Phys. 63, p. 1371, 2001.
Consolini, G., and P. De Michelis, Rank ordering multifractal analysis of the auroral electrojet index, Nonlinear Processes in Geophysics 18, p. 277, 2011.
Consolini, G., and A. T. Y. Lui, Symmetry breaking and nonlinear wave-wave interaction in current disruption: Possible evidence for a phase transition, in Magnetospheric Current Systems, edited by S. Ohtani et al., Geophysical Monograph 118, AGU, Washington, DC, p. 395, 2000.
Consolini, G., T. Chang, and A. T. Y. Lui, Complexity and topological disorder in the Earth’s magnetotail dynamics, in Nonequilibrium Phenomena in Plasmas, edited by A. S. Sharma, and P. K. Kaw, Springer, Dordrecht, The Netherlands, p. 51, 2005.
Consolini, G., M. F. Marcucci, and M. Candidi, Multifractal structure of auroral electrojet index data, Phys. Rev. Lett. 76, p. 4082, 1996.
Daróczy, Z., Generalized information functions, Information and Control, 16, p. 36, 1970.
Davis, T. N., and M. Sigiura, Aurora electrojet activity index AE and its universal time variations, J. Geophys. R. 71, p. 785, 1966.
Dennis, R. R., Solar hard X-ray bursts, Solar Physics, 100, p. 465, 1985.
Doe, R. A., J. D. Kelley, D. Lummerzheim, G. K. Parks, M. J. Brittnacher, G. A. Germany, and J. Spann, Initial comparison of POLAR UVI and Sondrestrom IS radar estimates for auroral electron energy flux, Geophys. Res. Lett. 24, p. 999, 1997.
Drossel, B., and F. Schwabl, Self-organized critical forest-fire model, Phys. Rev. Lett. 69, p. 1629, 1992.
Drossel, B., and F. Schwabl, Formation of space-time structure in a forest-fire model, Physica A 204, p. 212, 1994.
Drossel, B., S. Clar, and F. Schwabl, Exact results for the one-dimensional self-organized critical forest-fire model, Phys. Rev. Lett. 71, p. 3739, 1993.
Dubrulle, B., Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale invariance, Phys. Rev. Lett. 73, p. 959, 1994.
Echim, M. M., H. Lamy, and T. Chang, Multipoint observations of intermittency in the cusp regions, Nonlinear Processes in Geophysics 14, p. 525, 2007.
Einaudi, G., and M. Velli, The distribution of flares, statistics of magnetohydrodynamic turbulence and coronal heating, Phys. Plasmas 6, p. 4146, 1999.
Farge, M., Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 24, p. 395, 1992.
Feynman, J., and A. Ruzmaikin, Distributions of the interplanetary field revisited, J. Geophys. Res. 99, p. 17645, 1994.
Fisher, M. E., Correlation functions and the critical region of simple fluids, J. Math. Phys. 5, p. 944, 1964.
Fisher, M. E., Rigorous inequalities for critical-point correlation exponents, Phys. Rev. 180, p. 594, 1969.
Fisher, M. E., The theory of critical point singularities, in Proc. 51st “Enrico Fermi” Summer School on Critical Phenomena (Varenna, Italy), edited by M. S. Green, Academic, New York, 51, pp. 1–99, 1971.
Fisher, M. E., General scaling theory for critical points, in Collective Properties of Physical Systems, Proc. Nobel Symposium No. 24, edited by B. Lundqvist and S. Lundqvist, Academic Press, New York, p. 16, 1973.
Forman, M., and L. F. Burlaga, Exploring the Castaing distribution function to study intermittence in the solar wind at L1 in June 2000, in Solar Wind Ten, edited by M. Velli, R. Bruno, and F. Malara, AIP Conf. Proc. 679, p. 554, 2003.
Forster, D., D. R. Nelson, and M. J. Stephen, Large distance and long time properties of a randomly stirred fluid, Phys. Rev. A 16, p. 732, 1977.
Frisch, U., Turbulence, Cambridge University Press, Cambridge, 1995.
Georgoulis, M. K., M. Velli, and G. Einaudi, Statistical properties of magnetic activity in the solar corona, Astrophys. J. 497, p. 957, 1998.
Germany, G. A., M. R. Torr, and P. G. Richards, Use of FUV auroral emissions as diagnostics indicators, J. Geophys. Res. 99 (A1), p. 383, 1994.
Germany, G. A., G. K. Parks, M. Brittnacher, J. Cumnock, D. Lummerzheim, J. E. Spann, L. Chen, P. G. Richards, and F. J. Rich, Remote determination of auroral energy characteristics during substorm activity, Geophys. Rev. Lett. 24, p. 995, 1997.
Grassberger, P., Critical behavior of the Drossel-Schwabl forest-fire model, New Journal of Physics 4, p. 17.1, 2002.
Grassberger, P., and H. Kantz, On a forest-fire model with supposed self-organized criticality, J. Stat. Phys. 63, p. 685, 1991.
Griffiths, R. B., Thermodynamic inequality near the critical point for ferromagnets and fluids, Phys. Rev. Lett. 14, p. 623, 1965.
Grossmann, S., D. Lohse, and A. Reeh, Application of extended self-similarity in turbulence, Phys. Rev. E 56, p. 5473, 1997.
Haar, A., Zur theorie der orthogonalen functionensysteme, Math. Ann. 69, pp. 331–71, 1910.
Halperin, B. I., P. C. Hohenberg, and S. K. Ma, Calculation of dynamic critical properties using Wilson’s expansion methods, Phys. Rev. Lett. 29, p. 1548, 1972.
Halsey, T., M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Schraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A 33, p. 1141, 1986.
Heller, P., and Benedek, G. B., Nuclear magnetic resonance in MnF2 near the critical point, Phys. Rev. Lett. 8, p. 428, 1962.
Hentschel, H. G. E., and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica D 8, p. 435, 1983.
Hnat, B., S. C. Chapman, G. Rowlands, N. W. Watkins, and W. M. Farrell, Finite size scaling in the solar wind magnetic field energy density as seen by WIND, Geophys. Res. Lett. 29, p. 1446, doi:10.1029/2001GL014587, 2002.
Hnat, B., S. C. Chapman, G. Rowlands, N. W. Watkins, and M. P. Freeman, Scaling in long term data sets of geomagnetic indices and solar wind ε as seen by WIND spacecraft, Geophys. Res. Lett. 30, p. 2174, doi:10.1029/2003GL018209, 2003.
Horbury, T. A., A. Balogh, R. J. Forsyth, and E. J. Smith, Ulysses magnetic field observations of fluctuations within polar coronal flows. Ann. Geophys. 13, p. 105, 1995a.
Horbury, T. A., A. Balogh, R. J. Forsyth, and E. J. Smith, Observations of evolving turbulence in the polar solar wind. Geophys. Res. Lett. 22, p. 3401, 1995b.
Horbury, T. A., A. Balogh, R. J. Forsyth, and E. J. Smith, Ulysses observations of intermittent heliospheric turbulence, Adv. Space. Phys. 19, p. 847, 1997.
HosinoM., A. Nishida, T. Yamamoto, and S. Kokubun, Turbulent magnetic field in the distant magnetotail: Bottom-up process of plasmoid formation?Geophys. Res. Lett. 21, p. 2935, 1994.
Hwa, T., and M. Kardar, Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys. Rev. A 45, p. 7002, 1992.
Jensen, H. J., Self-organized Criticality – Emergent Complex Behavior in Physical and Biological Systems. Cambridge University Press, Cambridge, 1998.
JensenH. J., K. Christenson, and H. C. Fogedby, 1/f noise, distribution of lifetimes, and a pile of sand, Phys. Rev. B 40, p. 7425, 1989.
Jiang, G. S., and C. C. Wu, A high order finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comp. Phys. 150, p. 549, 1999.
Josephson, B. D., Inequality for the specific heat: II. Application to critical phenomena, Proc. Phys. Soc. 92, p. 276, 1967.
Kadanoff, L. P., Scaling laws for Ising models near Tc, Physics 2, p. 263, 1966.
Kadanoff, L. P., S. R. Nagel, L. Wu, and S. M. Zhou, Scaling and Universality in Avalanches, Phys. Rev. A 39, p. 6524, 1989.
Kadomtsev, B. B., and O. P. Pogutse, Nonlinear helical perturbations of a plasma in the tokamak, Sov. Phys.-JETP 38, p. 283, 1974.
Kaiser, A., and T. Schreiber, Information transfer in continuous processes, Physica D 166, p. 43, 2002.
Kertész, J., and L. B. Kiss, The noise spectrum in the model of self-organised criticality, J. Phys. A (Math. and General) 23, L433, 1990.
Kintner, P. M., J. Franz, P. Schunk, and E. Klatt, Interferometric coherency determination of wavelength or what are broadband ELF waves?, J. Geophys. Res. 105, p. 21237, 2000.
Klimas, A. J., V. M. Uritsky, and M. Paczuski, Self-organized criticality and intermittent turbulence in an MHD current sheet with a threshold Instability, arXiv astro-ph:0701486v2, 2007.
Klimas, A. J., V. M. Uritsky, D. Vassiliadis, and D. N. Baker, Reconnection and scale-free avalanching in a driven current-sheet model, J. Geophys. Res. 109, A02218, doi:10.1029/2003JA010036, 2004.
Klimas, A. J., V. M. Uritsky, D. Vassiliadis, and D. N. Baker, A mechanism for the loading-unloading substorm cycle missing in MHD global magnetospheric simulation models, Geophys. Res. Lett. 32, L14108, doi:10.1029/2005GL022916, 2005.
Klimas, A. J., D. N. Baker, D. A. Roberts, D. H. Fairfield, and J. Büchner, A nonlinear dynamical analogue model of geomagnetic activity. J. Geophys. Res. 97, p. 12253, 1992.
Klimas, A. J., J. A. Valdivia, D. Vassiliadis, D. N. Baker, M. Hesse, and J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet, J. Geophys. Res. 105, p. 18765, 2000.
Lamy, H., A. Wawrzaszek, W. M. Macek, and T. Chang, New multifractal analyses of the solar wind turbulence: Rank-ordered multifractal analysis and generalized two-scale weighted Cantor set model, in Solar Wind 12, edited by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, and F. Pantellini, Twelfth International Solar Wind Conference, AIP Conference Series, 1216, p. 124, 2010.
Lamy, H., M. Echim, and T. Chang, Rank-ordered multifractal spectrum of intermittent fluctuations in the cusp: A case study with Cluster data, 37th COSPAR Scientific Assembly, Paper D31-0017-08, p. 1686, 2008.
Landau, L. D., and E. M. Lifshitz, Statistical Physics, Addison-Wesley, Reading, MA, 1970.
Leubner, M. P., Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions, Phys. Plasmas 11, p. 1308, 2004.
Leubner, M. P., A nonextensive entropy approach to kappa-distributions, Astrophysics and Space Science 282, p. 573, 2002.
Leubner, M. P., Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions, Phys. Plasmas 11, p. 1308, 2004.
Leubner, M. P., and Z. Vörös, A nonextensive entropy approach to solar wind intermittency, Astrophys. J. 618, p. 547, 2005.
Li, Y., E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chan, A. Szalay, and G. Eyink, A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence, J. Turbulence 9, p. 1, 2008.
Loreto, V., A. Vespignani, and S. Zapperi, Renormalization scheme for forest-fire models, J. Phys. A, Math. Gen. 29, p. 2981, 1996.
Loreto, V., L. Pietronero, A. Vespignani, and S. Zapperi, Renormalization-group approach to the critical behavior of the forest-fire model, Phys. Rev. Lett. 75, p. 465, 1995.
Lu, E. T., Avalanches in continuum driven dissipative systems. Phys. Rev. Lett., 74, p. 2511, 1995.
Lu, E. T., and R. J. Hamilton, Avalanches and the distribution of solar flares, Astrophys. J. 380, L89–L92, 1991.
Lui, A. T. Y., Current disruption in the Earth’s magnetosphere: observations and models, J. Geophys. Res. 101, p. 13067, 1996.
Lui, A. T. Y., Multifractal and intermittent nature of substorm-associated magnetic turbulence in the magnetotail, J. Atmos. Solar-Terrestrial Phys. 63, p. 1379, 2001.
Lui, A. T. Y., Multiscale phenomena in the near-Earth magnetosphere, J. Atmos. Solar-Terrestrial Phys. 64, p. 125, 2002.
Lui, A. T. Y., C. L. Chang, A. Mankofsky, H. K. Wong, and D. W inske, A cross-field current instability for substorm expansions, J. Geophys. Res. 96, p. 11389, 1991.
Lui, A. T. Y., R. E. Lopez, S. M. Krimigis, R. W. McEntire, L. J. Zanetti, and T. A. Potemra, A case study of magnetotail current sheet disruption and diversion, Geophys. Res. Lett. 15, p. 721, 1988.
Lui, A. T. Y., S. C. Chapman, K. Liou, P. T. Newell, C. I. Meng, M. Brittnacher, and G. K. Parks, Is the dynamic magnetosphere an avalanching system?Geophys. Res. Lett. 27, p. 911, 2000.
Lui, A. T. Y., K. Liou, P. T. Newell, C. I. Meng, S. I. Ohtani, S. Kokubun, T. Ogino, M. Brittnacher, and G. Parks, Plasma and magnetic flux transport associated with auroral breakups, Geophys. Res. Lett. 25, p. 4059, 1998.
Lui, A. T. Y., Y. Zheng, Y. Zhang, H. Rème, M. W. Dunlop, G. Gustafsson, S. B. Mende, C. Mouikis, and L. M. Kistler, Cluster observation of plasma flow reversal in the magnetotail during a substorm, Ann. Geophys. 24, p. 2005, 2006.
Macek, W. M., Multifractality and intermittency in the solar wind, Nonlinear Processes in Geophysics, 14, p. 695, 2007.
Macek, W. M., and A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere, J. Geophys. Res., 114, A031108, doi:10.1029/2008JA013795, 2009.
Macek, W. M., and A. Wawrzaszek, Multifractal structure of small and large scales fluctuations of interplanetary magnetic fields, Planet. Space Sci. 59, p. 569, 2011a.
Macek, W. M., and A. Wawrzaszek, Multifractal two-scale Cantor set model for slow solar wind turbulence in the outer heliosphere during solar maximum, Nonlinear Processes in Geophysics 18, p. 287, 2011b.
Macek, W. M., A. Wawrzaszek, and L. F. Burlaga, Multifractal structures detected by Voyager 1 at the heliospheric boundaries, Ap. J. Letters, 793, L30, 2014.
Macek, W. M., A. Wawrzaszek, and V. Carbone, Observation of the multifractal spectrum at the termination shock by Voyager 1, Geophys. Res. Lett. 38, L19103 2011.
Macek, W. M., A. Wawrzaszek, and V. Carbone, Observation of the multifractal spectrum in the heliosphere and the heliosheath by Voyager 1 and 2, J. Geophys. Res. 117, A12101, doi:10.1029/2012JA018129, 2012.
Mallet, S., and W. L. Huang, Singularity detection and processing with wavelets, IEEE Trans. on Information Theory 38, p. 617, 1992.
Mallet, S., and S. Zhong, Characterization of signals from multiscale edges, IEEE Trans. on Pattern Analysis and Machine Intelligence 14, p. 710, 1992.
Mandelbrot, B., Fractals: Form, Chance and Dimension, Freeman & Co., San Francisco, 1977.
Marsch, E., and S. Liu, Structure functions and intermittency of velocity fluctuations in the inner solar wind, Ann. Geophys. 11, p. 227, 1993.
Marsch, E., and C. Y. Tu, Non-Gaussian probability distributions of solar wind fluctuations, Ann. Geophys. 12, p. 1127, 1994.
Marsch, E., and C. Y. Tu, Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind, Nonlinear Processes in Geophysics 4, p. 101, 1997.
MarschE., C. Y. Tu, and H. Rosenbauer, Multifractal scaling of the kinetic energy flux in solar wind turbulence, Ann. Geophys. 14, p. 259, 1996.
Matthaeus, W. H., and M. L. Goldstein, Stationarity of magnetohydrodynamic fluctuations in the solar wind, J. Geophys. Res. 87, p. 10347, 1982.
Matthaeus, W. H., M. L. Goldstein, and D. A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind, J. Geophys. Res. 95, p. 20673, 1990.
Matthaeus, W. H., G. Qin, J. W. Bieber, and G. P. Zank, Nonlinear collisionless perpendicular diffusion of charged particles, Astrophys. J. Lett. 590, L53, 2003.
Meneveau, C., Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, p. 469, 1991.
Meneveau, C., and K. R. Sreenivasan, Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett. 59, p. 1424, 1987.
Milovanov, A. V, L. M. Zelenyi, and G. Zimbardo, Fractal structures and power law spectra in the distant Earth’s magnetotail, J. Geophys. Res. 101, p. 19903, 1996.
Morlet, J., Sampling theory and wave propagation, in Issues on Acoustic Signal/Image Processing and Recognition, edited by C. H. Chen, NATO ASI, F1, p. 233, Springer, Berlin, 1983.
Mossner, W. K., B. Drossel, and F. Schwabl, Computer simulations of the forest-fire model, Physica A 190, p. 205, 1992.
Müller, W. C., and D. Biskamp, Scaling properties of three-dimensional magnetohydrodynamic turbulence, Phys. Rev. Lett. 84, p. 475, 2000.
Muzy, J. F., E. Bacry, and A. Arnéodo, The multifractal formalism revisited with wavelets, Intern. J. of Bifurcation and Chaos 4, p. 245, 1994.
Ott, E., Chaos in Dynamical Systems, Cambridge University Press, New York, 1993.
Pagel, C., and A. Balogh, A study of magnetic fluctuations and their anomalous scaling in the solar wind: the Ulysses fast-latitude scan, Nonlinear Processes in Geophysics 8, p. 313, 2001.
Parisi, G., and U. Frisch, On the singularity structure of fully developed turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics, edited by M. Ghil, R. Benzi, and G. Parisi, Proc Intern School of Physics, “Erico Fermi” 1983, Varenna, Italy, North Holland, Amsterdam, p. 84, 1985.
Perlman, E., R. Burns, Y. Li, and C. Meneveau, Data exploration of turbulence simulations using a database cluster, Article No. 23, Supercomputing SC07, ACM, IEEE, doi:10.1145/1362622, 1362654, 2007.
Petviashvili, V. I., and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere, Gordon and Breach Science Publishers, Reading, MA, 1992.
Pietronero, L., A. Vespignani, and S. Zapperi, Renormalization scheme for self-organized criticality in sandpile models, Phys. Rev. Lett. 72, p. 1690, 1994.
Politano, H., and A. Pouquet, Model of intermittency in magnetohydrodynamic turbulence, Phys. Rev. E, 52, p. 636, 1995.
Politano, H., A. Pouquet, and V. Carbone, Determination of anomalous exponents of structure functions in two-dimensional magnetohydrodynamic turbulence, Europhys. Lett. 43, p. 516, 1998.
Press, W. H., Flicker noise in astronomy and elsewhere, Comments on Modern Physics (Part C: Comments on Astrophysics) 7, p. 103, 1978.
Pruessner, G., and H. J. Jensen, Broken scaling in the forest-fire model, Phys. Rev. E 65, 056707, 2002.
Pruessner, G., and H. J. Jensen, Efficient algorithm for the forest-fire model, Phys. Rev. E 70, 066707, 2004.
Roberts, D. A., D. N. Baker, A. J. Klimas, and L. F. Bargatze, Indications of low dimensionality in magnetospheric dynamics. Geophys. Res. Lett. 18, p. 151, 1991.
Rushbrooke, G. S., On the thermodynamics of the critical region for the Ising problem, J. Chem. Phys. 39, p. 842, 1963.
Rusmaikin, A., I. R. Lyannaya, V. A. Styashkin, and E. Yeroshenko, The spectrum of the interplanetary magnetic field near 1.3 AU, J. Geophys. Res. 98, p. 13303, 1993.
Seyler, C. E., A mathematical model of the structure and evolution of small-scale discrete auroral arcs, J. Geophys. Res. 95, p. 17199, 1990.
ShanL. H., C. K. Goertz, and R. A. Smith, On the embedding-dimension analysis of AE and AL time series. Geophys. Res. Lett. 18, p. 1647, 1991b.
Shan, L. H., P. Hansen, C. K. Goertz, and R. A. Smith, Chaotic appearance of the AE index. Geophys. Res. Lett. 18, p. 147, 1991a.
Shannon, C. E., A mathematical theory of communication, The Bell System Technical Journal 27, p. 379 and p. 623, 1948.
Sharma, A. S, D. V. Vassiliadis, and K. Papadopoulos, Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis. Geophys. Res. Lett. 20, p. 335, 1993.
She, Z.-S., and E. Lévêque, Universal scaling laws in fully developed turbulence, Phys. Rev. Lett. 72, p. 336, 1994.
She, Z.-S., and E. C. Waymire, Quantized energy cascade and log-Poisson statistics in fully developed turbulence, Phys. Rev. Lett. 74, p. 262, 1995.
Sornette, D., Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, Springer, Heidelberg, 2000.
Sorriso-Valvo, L., V. Carbone, P. Veltri, G. Consolini, and R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophys. Res. Lett. 26, p. 1801, 1999.
Sorriso-Valvo, L., V. Carbone, P. Giuliani, P. Veltri, R. Bruno, V. Antoni, and E. Martines, Intermittency in plasma turbulence, Planetary Space. Sci. 49, p. 1193, 2001.
Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.
Stasiewicz, K., Y. Khotyaintsev, M. Berthomier, and J.-E. Wahlund, Identification of widespread turbulence of dispersive Alfvén waves, Geophys. Res. Lett. 27, p. 173, 2000.
Strauss, H. R., Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks, Phys. Fluids, 19, p. 134, 1976.
Sundkvist, D., A. Retinò, A. Vaivads, and S. D. Bale, Dissipation in turbulent plasma due to reconnection in thin current sheets, Phys. Rev. Lett. 99, 025004, 2007.
Sundkvist, D., V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. André, S. Buchert, and H. Rème, In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence, Nature 436, p. 825, 2005; erratum, 437, p. 290, 2005.
Takalo, J., Correlation dimension of AE data, Ph. Lic. Thesis, Laboratory Report 3, Department of Physics, University of Jyväskylä, 1993.
Takalo, J., J. Timonen, A. Klimas, J. Valdivia, and D. Vassiliadis, A coupled-map model for the magnetotail current sheet, Geophys. Res. Lett. 26, p. 2913, 1999.
Takalo, J., J. Timonen, A. Klimas, J. Valdivia, and D. Vassiliadis, A coupled-map as a model of the dynamics of the magnetotail current sheet, J. Atmos. Solar-Terrestrial Phys. 63, p. 1407, 2001.
Tam, S. W. Y., T. Chang, G. Consolini, and P. De Michelis, Renormalization-group description and comparison with simulation results for forest-fire models – possible interpretation of near-criticality phenomenon in the dynamics of space plasmas, Eos Trans. AGU 81 (48), Fall Meet. Suppl., Abstract SM62A-04, 2000.
Tam, S. W. Y., and T. Chang, Energization of ions by bimodal intermittent fluctuations, in Multiscale Coupling of Sun-Earth Processes, edited by A. T. Y. Lui, Y. Kamide, and G. Consolini, Elsevier, The Netherlands, p. 375, 2005.
Tam, S. W. Y., and T. Chang, Double rank-ordering technique of ROMA (rank-ordered multifractal analysis) for multifractal fluctuations featuring multiple regimes of scales, Nonlinear Processes in Geophysics 18, p. 405, 2011.
Tam, S. W. Y., T. Chang, P. M. Kintner, and E. Klatt, Intermittency analyses on the SIERRA measurements of the electric field fluctuations in the auroral zone, Geophys. Res. Lett. 32, L05109, doi:10.1029/2004GL021445, 2005.
Tam, S. W. Y., T. Chang, P. M. Kintner, and E. Klatt, Rank-ordered multifractal analysis for intermittent fluctuations with global crossover behavior, Phys. Rev. E, 81, 036414, 2010.
Tanaka, M., Meaning of an escort distribution and τ- transformation, in Mathematical Aspects of Generalized Entropies and Their Applications, Journal of Physics: Conference Series 201, 012007, 2010.
Taylor, G. I., The spectrum of turbulence, Proc. Royal Soc. London A 164, p. 476, 1938.
Taylor, J. B., Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett. 33, p. 1139, 1974.
Temerin, M., Doppler shift effects on double-probe-measured electric field power spectra, J. Geophys. Res. 84, p. 5929, 1979.
Tetreault, D., Turbulent relaxation of magnetic fields. 1. Coarse-grained dissipation and reconnection, J. Geophys. Res. 97, p. 8531, 1992a.
Tetreault, D., Turbulent relaxation of magnetic fields. 2. Self-organization and intermittency, J. Geophys. Res. 97, p. 8541, 1992b.
Torrence, C., and G. P. Compo, A practical guide to wavelet analysis (available online: http://paos.colorado.edu/research/wavelets), Bulletin of the American Meteorological Society 79, p. 61, 1998.
Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52, p. 479, 1988.
Tsallis, C., R. S. Mendes, and A. R. Plastino, The role of constraints within generalized nonextensive statistics, Physica A 261, p. 534, 1998.
Tsurutani, B. T., M. Sugiura, T. Iyemori, B. E. Goldstein, W. D. Gonzalez, S. I. Akasofu, and E. J. Smith, The nonlinear response of AE to the IMF Bs Driver: a spectral break at 5 hours, Geophys. Res. Lett. 17, p. 279, 1990.
Tu, C. Y., and E. Marsch, MHD Structures, Waves and Turbulence in the Solar Wind – Observations and Theories, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
Tu, C. Y., E. Marsch, and H. Rosenbauer, An extended structure function model and its application to the analysis of solar wind intermittency properties, Ann. Geophys. 14, p. 270, 1996.
Turcotte, D. L., Fractals and Chaos in Geology and Geophysics, Cambridge University Press, New York, 1997.
Uritsky, V. M., and A. J. Klimas, Hysteresis-controlled instability waves in a scale-free driven current sheet model. Nonlinear Processes in Geophysics 12, p. 827, 2005.
Uritsky, V. M., A. J. Klimas, and D. Vassiliadis, Multiscale dynamics and robust critical scaling in a continuum current sheet model, Phys. Rev. E 65, 046113, 2002b.
Uritsky, V. M., A. J. Klimas, and D. Vassiliadis, Critical finite-size scaling of energy and lifetime probability distributions of auroral emissions, Geophys. Res. Lett. 33, L08102, doi:10.1029/2005GL025330, 2006.
Uritsky, V. M., M. Pudovkin, and A. Steen, Geomagnetic substorms as perturbed self-organized critical dynamics of the magnetosphere, J. Atmos. Solar-Terrestrial Phys. 63, p. 1415, 2001a.
Uritsky, V. M., M. Paczuski, J. M. Davila, and S. I. Jones, Coexistence of self-organized criticality and intermittent turbulence in the solar corona. Phys. Rev. Lett. 99, 025001, 2007.
Uritsky, V. M., A. J. Klimas, J. A. Valdivia, D. Vassiliadis, and D. N. Baker, Stable critical behavior and fast field annihilation in a magnetic field reversal model, J. Atmos. Solar-Terrestrial Phys. 63, p. 1425, 2001b.
Uritsky, V. M., A. J. Klimas, D. Vassiliadis, D. Chua, and G. Parks, Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system. J. Geophys. Res. 107, A12, p. 1426, doi: 10.1029/2001JA000281, 2002a.
Vahnstein, S., K. Sreenivasan, R. Pierrehumbert, V. Kashyap, and A. Juneja, Scaling exponents for turbulence and other random processes and their relationships with multifractal structure, Phys. Rev. E 50, p. 1823, 1994.
Vassiliadis, D., A. Anastasiadis, M. Georgoulis, and L. Vlahos, Derivation of solar flare cellular automata models from a subset of the magnetohydrodynamic equations, Astrophys. J. 509, L53, 1998.
Vasyliunas, V. M., A Survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, p. 2839, 1968.
Vespignani, A., and S. Zapperi, Order parameter and scaling fields in self-organized criticality, Phys. Rev. Lett. 78, p. 4793, 1997.
Vespignani, A., and S. Zapperi, How self-organized criticality works: A unified mean-field theory, Phys. Rev. E 57, p. 6345, 1998.
Vespignani, A., S. Zapperi, and L. Pietronero, Renormalization approach to the self-organized critical behavior of sandpile models, Phys. Rev. E 51, p. 1711, 1995.
Vlahoes, L., M. Georgoulis, R. Kluiving, and P. Paschos, The statistical flare, Astronomy and Astrophysics. 299, p. 897, 1995.
Vörös, Z., On multifractality of high-latitude geomagnetic fluctuations, Ann. Geophys. 18, p. 1273, 2000.
VörösZ., W. Baumjohann, R. Nakamura, A. Runov, M. Volwerk, T. L. Zhang, and A. Balogh, Wavelet analysis of magnetic turbulence in the Earth’s plasma sheet, Phys. Plasmas 11, p. 1333, 2004.
Vörös, Z., W. Baumjohann, R. Nakamura, A. Runov, M. Volwerk, H. Schwarzl, A. Balogh, and H. Rème, Dissipation scales in the Earth’s plasma sheet estimated from Cluster measurements, Nonlinear Processes in Geophysics 12, p. 725, 2005.
Vörös, Z., W. Baumjohann, R. Nakamura, A. Runov, T. L. Zhang, M. Volwerk, H. U. Eichelberger, A. Balogh, T. S. Horbury, K. H. Glassmeier, B. Klecker, and H. Rème, Multi-scale magnetic field intermittence in the plasma sheet, Ann. Geophys. 21, p. 1955, 2003.
Watkins, N. W., S. C. Chapman, R. O. Dendy, and G. Rowlands, Robustness of collective behavior in strongly driven avalanche models: magnetospheric implications. Geophys. Res. Lett. 26, p. 2617, 1999.
Weygand, J. M., M. G. Kivelson, K. K. Khurana, H. K. Schwarzl, S. M. Thompson, R. L. McPherron, A. Balogh, L. M. Kistler, M. L. Goldstein, J. Borovsky, and D. A. Roberts, Plasma sheet turbulence observed by Cluster II, J. Geophys. Res. 110, A01205, doi:10.1029/2004JA010581, 2005.
Wilson, K. G., Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4, p. 3174, 1971a.
Wilson, K. G., Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior, Phys. Rev. B 4, p. 3184, 1971b.
Wilson, K. G., and J. Kogut, The renormalization group and the ε expansion, Physics Reports 12, p. 75, 1974.
Wu, C. C., and T. Chang, 2D MHD simulation of the emergence and merging of coherent structures, Geophys. Res. Lett. 27, p. 863, 2000.
Wu, C. C., and T. Chang, Further study of the dynamics of two-dimensional MHD coherent structures – a large scale simulation, J. Atmos. Solar-Terrestrial Phys. 63, p. 1447, 2001.
Wu, C. C., and T. Chang, Intermittent turbulence in 2D MHD simulation, in Multiscale Coupling of Sun-Earth Processes, edited by A. T. Y. Lui, Y. Kamide, and G. Consolini, Elsevier, The Netherlands, p. 321, 2005.
Wu, C. C., and T. Chang, Rank-ordered multifractal analysis (ROMA) of probability distributions in fluid turbulence, Nonlinear Processes in Geophysics 18, p. 261, 2011.
Wu, C. C., T. Chang, and V. M Uritsky, Rank-ordered multifractal analysis (ROMA) of intermittent dissipative structures in solar corona, Abstract SH51C-2020, 2011 Fall Meeting, AGU, San Francisco.
Yordanova, E., M. Grezesiak, A. W. Wernik, B. Popielawska, and K. Stasiewicz, Multifractal structure of turbulence in the magnetospheric cusp, Ann. Geophys. 22, p. 2431, 2004.
Yordanova, E., J. Bergman, G. Consolini, M. Kretzschmar, M. Materassi, B. Popielawska, M. Roca-Sogorb, K. Stasiewicz, and A. W. Wernik, Anisotropic scaling features and complexity in magnetospheric-cusp: a case study, Nonlinear Processes in Geophysics 12, p. 817, 2005.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.