Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T00:07:38.925Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 October 2019

Chris Jacobsen
Affiliation:
Argonne National Laboratory, Illinois
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
X-ray Microscopy
, pp. 519 - 572
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[Aamir 2011] Aamir, R., et al., “Pixel sensitivity variations in a CdTe-Medipix2 detector using poly-energetic x-rays,” J. Instrumentation 6, C01059 (2011).CrossRefGoogle Scholar
[Abbey 2008a] Abbey, B., et al., “Keyhole coherent diffrac-tive imaging,” Nature Phys. 4, 394-398 (2008).CrossRefGoogle Scholar
[Abbey 2008b] Abbey, B., et al., “Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm,” Appl. Phys. Lett. 93, 214101 (2008).CrossRefGoogle Scholar
[Achterhold 2013] Achterhold, K., et al., “Monochromatic computed tomography with a compact laser-driven x-ray source,” Sci. Rep. 3, 1313 (2013).CrossRefGoogle ScholarPubMed
[Adams 1982] Adams, M. F. and Anderson, A. P., “Synthetic aperture tomographic (SAT) imaging for microwave diagnostics,” IEE Proceedings H: Microwaves, Optics and Antennas 129, 83-88 (1982).Google Scholar
[Adams 2011] Adams, F., et al., “Microscopic x-ray fluorescence analysis with synchrotron radiation sources,” in Vértes, A., et al., eds., Handbook of Nuclear Chemistry, chapter 34, 1737-1759, Springer, (2011).Google Scholar
[Ade 1990] Ade, H., et al., “X-ray spectromicroscopy with a zone plate generated microprobe,” Appl. Phys. Lett. 56, 1841-1843 (1990).CrossRefGoogle Scholar
[Ade 1991] Ade, H., et al., “Images of a microelectronic device with the X1-SPEM, a first generation scanning pho-toemission microscope at the National Synchrotron Light Source,” J. Vac. Sci. Tech. A 9, 1902-1906 (1991).CrossRefGoogle Scholar
[Ade 1992] Ade, H., et al., “Chemical contrast in x-ray microscopy and spatially resolved XANES spectroscopy of organic specimens,” Science 258, 972-975 (1992).CrossRefGoogle ScholarPubMed
[Ade 1993] Ade, H. and Hsiao, B., “X-ray linear dichroism microscopy,” Science 262, 1427-1429 (1993).CrossRefGoogle ScholarPubMed
[Ade 1994] Ade, H., “NEXAFS microscopy of polymeric samples,” Synch. Rad. News 7, (2), 11-15 (1994).CrossRefGoogle Scholar
[Ade 1998] Ade, H. W., et al., “Bulk and surface characterization of a dewetting thin film polymer bilayer,” Appl. Phys. Lett. 73, 3775-3777 (1998).CrossRefGoogle Scholar
[Ade 2002] Ade, H. and Urquhart, S. G., “NEXAFS spectroscopy and microscopy of natural and synthetic polymers,” in Sham, T. K., ed., Chemical Applications of Synchrotron Radiation, 285-355, World Scientific Publishing, (2002).Google Scholar
[Ade 2008] Ade, H. W. and Hitchcock, A. P., “NEXAFS microscopy and resonant scattering: Composition and orientation probed in real and reciprocal space,” Polymer 49, 643-675 (2008).CrossRefGoogle Scholar
[Adrian 1984] Adrian, M., et al., “Cryo-electron microscopy of viruses,” Nature 308, 32-36 (1984).CrossRefGoogle ScholarPubMed
[Agarwal 1991] Agarwal, B. K., X-ray Spectroscopy: An Introduction, Springer-Verlag, second edition (1991).CrossRefGoogle Scholar
[Agrawal 1988] Agrawal, P. C. and Ramsey, B. D., “Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases,” Nucl. Inst. Meth. Phys. Res. A 273, 331-337 (1988).CrossRefGoogle Scholar
[Albright 1997] Albright, J. and Kunstel, M., Bombshell: The Secret Story of America's Unknown Atomic Spy Conspiracy, Crown (1997).Google Scholar
[Ali 2018] Ali, S. S., et al., “Zone plate performance as a function of tilt analyzed via multislice simulations,” Mi-crosc. Microanal. 24, 302-303 (2018).Google Scholar
[Alkhazov 1967] Alkhazov, G. D., et al., “Ionization fluctuations and resolution of ionization chambers and semiconductor detectors,” Nucl. Inst. Meth. 48, 1-12 (1967).CrossRefGoogle Scholar
[Allé 2016] Allé, P., et al., “Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality,” Phys. Scripta 91, 063001 (2016).CrossRefGoogle Scholar
[Alonso-Mori 2012] Alonso-Mori, R., et al., “A multi-crystal wavelength dispersive x-ray spectrometer,” Rev. Sci. Inst. 83, 073114 (2012).CrossRefGoogle ScholarPubMed
[Als-Nielsen 2011] Als-Nielsen, J. and McMorrow, D., Elements of Modern X-ray Physics, Wiley, second edition (2011).CrossRefGoogle Scholar
[Altissimo 2018] Altissimo, M., et al., “Silicon carbide membranes as substrate for synchrotron measurements,” J. Instrumentation 13, C05017 (2018).CrossRefGoogle Scholar
[Amat 2010] Amat, F., et al., “Alignment of cryo-electron tomography datasets,” Meth. Enzymology 482, 343-367 (2010).Google ScholarPubMed
[Ambrose 1973] Ambrose, J. and Hounsfield, G., “Computed transverse axial tomography,” British J. Radiology 46, 148-149 (1973).CrossRefGoogle Scholar
[Anand 2013] Anand, R., et al., “Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits,” Nature Comm. 4, 2614 (2013).Google Scholar
[Anders 1999] Anders, S., et al., “Study of tribochemical processes on hard disks using photoemission electron microscopy,” J. Tribology 121, 961-967 (1999).CrossRefGoogle Scholar
[Anderson 2000] Anderson, E., et al., “Nanofabrication and diffractive optics for high-resolution x-ray applications,” J. Vac. Sci. Tech. B 18, 2970-2975 (2000).CrossRefGoogle Scholar
[Andersson 1994] Andersson, O. and Suga, H., “Thermal conductivity of low-density amorphous ice,” Solid State Comm. 91, 985-988 (1994).CrossRefGoogle Scholar
[Andreasson 2014] Andreasson, J., et al., “Automated identification and classification of single particle serial fem-tosecond x-ray diffraction data,” Opt. Express 22, 2497-2510 (2014).CrossRefGoogle ScholarPubMed
[Andrejczuk 2015] Andrejczuk, A., et al., “Influence of imperfections in a wedged multilayer Laue lens for the focusing of x-rays investigated by beam propagation method,” Nucl. Inst. Meth. Phys. Res. B 364, 60-64 (2015).CrossRefGoogle Scholar
[Andrew 2018] Andrew, R. M., “Global CO2 emissions from cement production,” Earth Syst. Sci. Data 10, 195-217 (2018).Google Scholar
[Andrews 1936] Andrews, J. R., “Planigraphy I. Introduction and history,” Am. J. Roentgenology Radium Ther. 36, 575-587 (1936).Google Scholar
[Andrews 1937] Andrews, J. R. and Stava, R. J., “Planigra-phy II. Mathematical analyses of the methods, description of apparatus, and experimental proof,” Am. J. Roentgenol-ogy Radium Ther. 38, 145-151 (1937).Google Scholar
[Andrews 1987] Andrews, S. B., et al., “Distribution of calcium and potassium in presynaptic nerve terminals from cerebellar cortex,” Proc. Nat. Acad. Sci. 84, 1713-1717 (1987).CrossRefGoogle ScholarPubMed
[Angell 2004] Angell, C. A., “Amorphous water,” Ann. Rev. Phys. Chem. 55, 559-583 (2004).CrossRefGoogle ScholarPubMed
[Angello 2004] Angello, S. G., et al., “Development of a mixed-mode pixel array detector for macromolecular crystallography,” IEEE Nuclear Science Symposium Conference Record 7, 4667-4671 (2004).Google Scholar
[Aoki 1972] Aoki, S., et al., “X-ray hologram obtained by using synchrotron radiation,” Japanese J. Appl. Phys. 11, 1857 (1972).CrossRefGoogle Scholar
[Aoki 1974] Aoki, S. and Kikuta, S., “X-ray holographic microscopy,” Japanese J. Appl. Phys. 13, 1385-1392 (1974).CrossRefGoogle Scholar
[Aoki 1992] Aoki, S., et al., “Sub-100 nm-resolution grazing incidence soft x-ray microscope with a laser-produced plasma source,” Japanese J. Appl. Phys. 31, 3477-3480 (1992).CrossRefGoogle Scholar
[Aoki 1998] Aoki, S., et al., “Imaging x-ray fluorescence microscope with a Wolter-type grazing-incidence mirror,” J. Synch. Rad. 5, 1117-1118 (1998).CrossRefGoogle ScholarPubMed
[Aoki 2006] Aoki, S., et al., eds., X-ray Microscopy: Proceedings of the 8th International Conference, The Institute of Pure and Applied Physics (IPAP) (2006).Google Scholar
[Aquila 2015] Aquila, A., et al., “The linac coherent light source single particle imaging road map,” Struct. Dynamics 2, 041701 (2015).CrossRefGoogle ScholarPubMed
[Arai 2011] Arai, Y., et al., “Development of SOI pixel process technology,” Nucl. Inst. Meth. Phys. Res. A 636, S31- S36 (2011).CrossRefGoogle Scholar
[Aranda 2015] Aranda, M. A. G., “Recent studies of cements and concretes by synchrotron radiation crystallographic and cognate methods,” Crystallogr. Rev. 22, 150-196 (2015).Google Scholar
[Aristov 1994] Aristov, V. V. and Erko, A. I., eds., X-ray Microscopy IV, Bogorodskii Pechatnik (1994).Google Scholar
[Aristov 2000a] Aristov, V., et al., “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77, 4058-4060 (2000).CrossRefGoogle Scholar
[Aristov 2000b] Aristov, V. V., et al., “X-ray focusing by planar parabolic refractive lenses made of silicon,” Optics Comm. 177, 33-38 (2000).CrossRefGoogle Scholar
[Arnison 2004] Arnison, M. R., et al., “Linear phase imaging using differential interference contrast microscopy,” J. Mi-crosc. 214, 7-12 (2004).Google ScholarPubMed
[Arnoux 2018] Arnoux, Q., et al., “X-ray microscopic investigation of molecular orientation in a hole carrier thin film for organic solar cells,” Nano Research 11, 2771-2782 (2018).CrossRefGoogle Scholar
[Aronova 2011] Aronova, M. A. and Leapman, R. D., “Development of electron energy-loss spectroscopy in the biological sciences,” MRS Bulletin 37, 53-62 (2011).Google Scholar
[Arrhenius 1889] Arrhenius, S., “Über die Dissocia-tionswärme und den Einfluss der Temperatur auf den Dis-sociationsgrad der Elektrolyte,” Zeitschrift für Physikalis-che Chemie 4, 96-116 (1889).Google Scholar
[Ash 1980] Ash, E. A., ed., Scanned Image Microscopy, Academic Press (1980).Google Scholar
[Ashcroft 1976] Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Cengage Learning (1976).Google Scholar
[Ashley 1976] Ashley, J. C., et al., “Calculations of mean free paths and stopping powers of low energy electrons (= 10 keV) in solids using a statistical model,” IEEE Trans. Nucl. Sci. 23, 1833-1837 (1976).CrossRefGoogle Scholar
[Ashley 1978] Ashley, J. C., et al., “Inelastic interactions of electrons with polystyrene: calculations of mean free paths, stopping powers, and CSDA ranges,” IEEE Trans. Nucl. Sci. 25, 1566-1570 (1978).CrossRefGoogle Scholar
[Attwood 2017] Attwood, D. and Sakdinawat, A., X-rays and Extreme Ultraviolet Radiation, Cambridge University Press, second edition (2017).Google Scholar
[Auger 1925] Auger, P., “Sur l'effet photoélectrique com-posé,” Journal de Physique et Le Radium 6, 205-208 (1925).CrossRefGoogle Scholar
[Authier 2013] Authier, A., Early Days of X-ray Crystallography, Oxford University Press (2013).CrossRefGoogle Scholar
[Ayyer 2014] Ayyer, K., et al., “Real-space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames,” Opt. Express 22, 2403-2413 (2014).CrossRefGoogle ScholarPubMed
[Ayyer 2016] Ayyer, K., et al., “Macromolecular diffractive imaging using imperfect crystals,” Nature 530, 202-206 (2016).CrossRefGoogle ScholarPubMed
[Babinet 1837] Babinet, J., “Mémoires d'optique météorologique,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 4, 638-648 (1837).Google Scholar
[Baez 1950] Baez, A. V. and Kirkpatrick, P., “Design and construction of an x-ray microscope,” Phys. Rev. 78, 83 (1950).Google Scholar
[Baez 1952a] Baez, A. V., “Resolving power in diffraction microscopy with special reference to x-rays,” Nature 169, 963-964 (1952).CrossRefGoogle Scholar
[Baez 1952b] Baez, A. V., “A study in diffraction microscopy with special reference to x-rays,” J. Opt. Soc. Am. 42, 756-762 (1952).CrossRefGoogle Scholar
[Baez 1960] Baez, A., “A self-supporting metal Fresnel zone-plate to focus extreme ultra-violet and soft x-rays,” Nature 186, 958 (1960).CrossRefGoogle Scholar
[Baez 1989] Baez, A. V., “The early days of x-ray optics: a personal memoir,” J. X-ray Sci. Tech. 1, 3-6 (1989).CrossRefGoogle ScholarPubMed
[Baez 1997] Baez, A. V., “Anecdotes about the early days of x-ray optics,” J. X-ray Sci. Tech. 7, 90-97 (1997).CrossRefGoogle ScholarPubMed
[Bajt 2002] Bajt, S., et al., “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797-1804 (2002).CrossRefGoogle Scholar
[Bajt 2018] Bajt, S., et al., “X-ray focusing with efficient high-NA multilayer Laue lenses,” Light Sci. Appl. 7, e17162 (2018).CrossRefGoogle ScholarPubMed
[Bajura 2011] Bajura, M., et al., “Imaging integrated circuits with x-ray microscopy,” in Franco, J. and Del Rosario, R., eds., 36th Annual GOMACTech Converence (2011).Google Scholar
[Bakalar 2009] Bakalar, N., “X-Rays, 1896,” New York Times D7, June 15 (2009).Google Scholar
[Bakshi 2008] Bakshi, V., EUV Lithography, Wiley (2008).CrossRefGoogle Scholar
[Balaic 1995] Balaic, D. X., et al., “Focusing of x-rays by total external reflection from a paraboloidally tapered glass capillary,” J. Synch. Rad. 2, 296-299 (1995).CrossRefGoogle ScholarPubMed
[Bald 1987] Bald, W. B., Quantitative Cryofixation, Adam Hilger (1987).Google Scholar
[Ballabriga 2007] Ballabriga, R., et al., “The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance,” IEEE Trans. Nucl. Sci. 54, 1824-1829 (2007).CrossRefGoogle Scholar
[Bambynek 1972] Bambynek, W., et al., “X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities,” Rev. Mod. Phys. 44, 716-813 (1972).CrossRefGoogle Scholar
[Bammes 2010] Bammes, B. E., et al., “Radiation damage effects at four specimen temperatures from 4 to 100 K,” J. Struct. Bio. 169, 331-341 (2010).CrossRefGoogle ScholarPubMed
[Banfield 2001] Banfield, J. F., et al., “Mineralogical biosig-natures and the search for life on Mars,” Astrobiology 1, 447-465 (2001).CrossRefGoogle ScholarPubMed
[Barbee Jr 1985] Barbee Jr, T. W., et al., “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet,” App. Opt. 24, f[Barkla 1911] Barkla, C.
[Barkla 1909] Barkla, C. G., “Phenomena of x-ray transmission,” Proc. Cambridge Phil. Soc. 15, 257-268 (1909).Google Scholar
[Barkla 1911] Barkla, C. G., “The spectra of the fluorescent Röntgen radiations,” Phil. Mag. 22, 396-412 (1911).CrossRefGoogle Scholar
[Barnaby 2006] Barnaby, H. J., “Total-ionizing-dose effects in modern CMOS technologies,” IEEE Trans. Nucl. Sci. 53, 3103-3121 (2006).CrossRefGoogle Scholar
[Barnett 1973] Barnett, M. E., “Reciprocity theorem and equivalence of conventional and scanning transmission microscopes,” Optik 38, 585-588 (1973).Google Scholar
[Barrington Leigh 1974] Barrington Leigh, J. and Rosen-baum, G., “An report on the application of synchrotron radiation to low-angle scattering,” J. Appl. Cryst. 7, 117-121 (1974).Google Scholar
[Bartels 2002] Bartels, R. A., et al., “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376-378 (2002).CrossRefGoogle ScholarPubMed
[Bartels 2015] Bartels, M., et al., “X-ray holographic imaging of hydrated biological cells in solution,” Phys. Rev. Lett. 114, 048103 (2015).CrossRefGoogle ScholarPubMed
[Barty 2008] Barty, A., et al., “Three-dimensional coherent x-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms,” Phys. Rev. Lett. 101, 055501 (2008).CrossRefGoogle ScholarPubMed
[Barty 2011] Barty, A., et al., “Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements,” Nature Photonics 6, 35-40 (2011).Google Scholar
[Barty 2014] Barty, A., et al., “Cheetah: software for high-throughput reduction and analysis of serial femtosecond x-ray diffraction data,” J. Appl. Cryst. 47, 1118-1131 (2014).CrossRefGoogle ScholarPubMed
[Bässler 1991] Bässler, M., “Messungen der Quantenaus-beute (DQE) von Filmemulsionen für Strahlung der Weillenlänge 2.4 nm,” Master's thesis, Georg-August-Universität Göttingen, (1991).Google Scholar
[Bassous 1976] Bassous, E., et al., “High transmission x-ray masks for lithographic applications,” Solid State Tech. 19, 55-58 (1976).Google Scholar
[Bastiaans 1986] Bastiaans, M., “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1238 (1986).CrossRefGoogle Scholar
[Bates 1982] Bates, R. H. T., “Fourier phase problems are uniquely solvable in more than one dimension. I. Underlying theory,” Optik 61, 247-262 (1982).Google Scholar
[Bates 1989] Bates, R. H. T. and Rodenburg, J. M., “Sub-Ångström transmission microscopy: a Fourier transform algorithm for microdiffraction plane intensity information,” Ultramicroscopy 31, 303-307 (1989).CrossRefGoogle Scholar
[Batey 2014] Batey, D. J., et al., “Reciprocal-space up-sampling from real-space oversampling in x-ray ptychog-raphy,” Phys. Rev. A 89, 37-5 (2014).CrossRefGoogle Scholar
[Batterman 1964] Batterman, B. W. and Cole, H., “Dynamical diffraction of x rays by perfect crystals,” Rev. Mod. Phys. 36, 681 (1964).CrossRefGoogle Scholar
[Bauer 1994] Bauer, E., “Low energy electron microscopy,” Rep. Prog. Phys. 57, 895-938 (1994).CrossRefGoogle Scholar
[Bearden 1967] Bearden, J. and Burr, A., “Reevaluation of x-ray atomic energy levels,” Rev. Mod. Phys. 39, 125-142 (1967).CrossRefGoogle Scholar
[Becherer 1967] Becherer, R. J. and Parrent, Jr, G. B., “Nonlinearity in optical imaging systems,” J. Opt. Soc. Am. 57, 1479-1486 (1967).CrossRefGoogle Scholar
[Becker 2014] Becker, J. S., et al., “Bioimaging mass spectrometry of trace elements - recent advance and applications of LA-ICP-MS: A review,” Analytica Chimica Acta 835, 1-18 (2014).CrossRefGoogle ScholarPubMed
[Beetz 2003] Beetz, T. and Jacobsen, C., “Soft x-ray radiation-damage studies in PMMA using a cryo-STXM,” J. Synch. Rad. 10, 280-283 (2003).CrossRefGoogle ScholarPubMed
[Beetz 2005] Beetz, T., et al., “Apparatus for x-ray diffraction microscopy and tomography of cryo specimens,” Nucl. Inst. Meth. Phys. Res. A 545, 459-468 (2005).CrossRefGoogle Scholar
[Bennett 1993] Bennett, P. M., et al., “The effect of soft X-radiation on myofibrils,” J. Microsc. 172, 109-119 (1993).CrossRefGoogle ScholarPubMed
[Berenguer 2013] Berenguer, F., et al., “X-ray lensless microscopy from undersampled diffraction intensities,” Phys. Rev. B 88, 144101 (2013).CrossRefGoogle Scholar
[Bergamaschi 2011] Bergamaschi, A., et al., “Beyond single photon counting x-ray detectors,” Nucl. Inst. Meth. Phys. Res. A 628, 238-241 (2011).CrossRefGoogle Scholar
[Bergh 2008] Bergh, M., et al., “Feasibility of imaging living cells at subnanometer resolutions by ultrafast x-ray diffraction,” Q. Rev. Biophys. 41, 181-204 (2008).CrossRefGoogle ScholarPubMed
[Berglund 1998] Berglund, M., et al., “Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation,” Rev. Sci. Inst. 69, 2361-2364 (1998).CrossRefGoogle Scholar
[Berglund 2000] Berglund, M., et al., “Compact water-window transmission x-ray microscopy,” J. Microsc. 197, 268-273 (2000).CrossRefGoogle ScholarPubMed
[Bergmann 2007] Bergmann, U., “Archimedes brought to light,” Physics World 20, 39-42 (2007).CrossRefGoogle Scholar
[Bershad 1974] Bershad, N. and Rockmore, A., “On estimat-ing signal-to-noise ratio using the sample correlation coefficient,” IEEE Trans. Info. Theory 20, 112-113 (1974).CrossRefGoogle Scholar
[Bertilson 2011] Bertilson, M., et al., “Laboratory soft-x-ray microscope for cryotomography of biological specimens,” Opt. Lett. 36, 2728-2730 (2011).CrossRefGoogle ScholarPubMed
[Bertoni 2011] Bertoni, M. I., et al., “Nanoprobe x-ray fluorescence characterization of defects in large-area solar cells,” Energy Env. Sci. 4, 4252-4257 (2011).CrossRefGoogle Scholar
[Bertrand 2012] Bertrand, L., et al., “Development and trends in synchrotron studies of ancient and historical materials,” Phys. Rep. 519, 51-96 (2012).CrossRefGoogle Scholar
[Bertrand 2015] Bertrand, L., et al., “Mitigation strategies for radiation damage in the analysis of ancient materials,” Trends Anal. Chem. 66, 128-145 (2015).CrossRefGoogle Scholar
[Bethe 1928] Bethe, H., “Theorie der Beugung von Elek-tronen an Kristallen,” Annalen der Physik 392, 55-129 (1928).CrossRefGoogle Scholar
[Betzig 1991] Betzig, E., et al., “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991).CrossRefGoogle ScholarPubMed
[Betzig 1995] Betzig, E., “Proposed method for molecular optical imaging,” Opt. Lett. 20, 237-239 (1995).CrossRefGoogle ScholarPubMed
[Betzig 2006] Betzig, E., et al., “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).CrossRefGoogle ScholarPubMed
[Bianconi 1978] Bianconi, A., et al., “Intrinsic luminescence excitation spectrum and extended x-ray absorption fine structure above the K edge in CaF2,” Phys. Rev. B 17, 2021-2024 (1978).CrossRefGoogle Scholar
[Bigler 1985] Bigler, E. and Polack, F., “Scintillating optical fiber array for high-resolution x-ray imaging over 5 keV,” App. Opt. 24, 994-997 (1985).Google Scholar
[Bilderback 1994a] Bilderback, D. H., et al., “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201-203 (1994).CrossRefGoogle ScholarPubMed
[Bilderback 1994b] Bilderback, D. H., et al., “X-ray applications with glass-capillary optics,” J. Synch. Rad. 1, 37-42 (1994).CrossRefGoogle ScholarPubMed
[Bilderback 1995] Bilderback, D. H. and Thiel, D. J., “Mi-crobeam generation with capillary optics,” Rev. Sci. Inst. 66, 2059-2063 (1995).CrossRefGoogle Scholar
[Bionta 1994] Bionta, R. M., et al., “Hard x-ray sputtered-sliced phase zone plates,” Appl. Phys. Lett. 64, 945-947 (1994).CrossRefGoogle Scholar
[Birks 1964] Birks, L. S., et al., “Excitation of characteristic X rays by protons, electrons, and primary X rays,” J. Appl. Phys. 35, 2578-2581 (1964).CrossRefGoogle Scholar
[Birks 1965] Birks, L. S., et al., “X-ray yield and line /background ratios for electron excitation,” J. Appl. Phys. 36, 699-702 (1965).CrossRefGoogle Scholar
[Blanco-Roldán 2015] Blanco-Roldán, C., et al., “Nanoscale imaging of buried topological defects with quantitative x-ray magnetic microscopy,” Nature Communications 6, 8196 (2015).CrossRefGoogle ScholarPubMed
[Blasse 1994] Blasse, G. and Grabmaier, B. C., Luminescent Materials, Springer-Verlag (1994).CrossRefGoogle Scholar
[Bleuet 2009] Bleuet, P., et al., “A hard x-ray nanoprobe for scanning and projection nanotomography,” Rev. Sci. Inst. 80, 056101 (2009).CrossRefGoogle ScholarPubMed
[Blewett 1998] Blewett, J. P., “Synchrotron radiation - early history,” J. Synch. Rad. 5, 135-139 (1998).CrossRefGoogle ScholarPubMed
[Blodgett 1935] Blodgett, K. B., “Films built by depositing successive monomolecular layers on a solid surface,” J. Am. Chem. Soc. 57, 1007-1022 (1935).CrossRefGoogle Scholar
[Blodgett 1937] Blodgett, K. B. and Langmuir, I., “Built-up films of barium stearate and their optical properties,” Phys. Rev. 51, 964-982 (1937).CrossRefGoogle Scholar
[Boesenberg 2013] Boesenberg, U., et al., “Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation,” Chemistry of Materials 25, 1664-1672 (2013).CrossRefGoogle ScholarPubMed
[Bohic 2012] Bohic, S., et al., “Biomedical applications of the ESRF synchrotron-based microspectroscopy platform,” J. Struct. Bio. 177, 248-258 (2012).CrossRefGoogle ScholarPubMed
[Bohr 1913] Bohr, N., “On the constitution of atoms and molecules,” Phil. Mag. 26, 1-25 (1913).Google Scholar
[Boisseau 1986] Boisseau, P.Determination of three-dimensional trace element distributions by the use of monochromatic x-ray microbeams,” PhD thesis, Massachusetts Institute of Technology, (1986).Google Scholar
[Boisseau 1987] Boisseau, P. and Grodzins, L., “Fluorescence tomography using synchrotron radiation at the NSLS,” Hyperfine Interactions 33, 283-292 (1987).CrossRefGoogle Scholar
[Bonifacio 1984] Bonifacio, R., et al., “Collective instabilities and high-gain regime in a free electron laser,” Optics Comm. 50, 373-378 (1984).CrossRefGoogle Scholar
[Bonnet 1999] Bonnet, N., et al., “Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis,” Ultramicroscopy 77, 97-112 (1999).CrossRefGoogle Scholar
[Bonse 1965] Bonse, U. and Hart, M., “An x-ray interferometer,” Appl. Phys. Lett. 6, 155-156 (1965).CrossRefGoogle Scholar
[Born 1926] Born, M., “Quantenmechanik der Stoßvorgänge,” Zeitschrift für Physik 38, 803-827 (1926).CrossRefGoogle Scholar
[Born 1999] Born, M. and Wolf, E., Principles of Optics, Cambridge University Press, seventh edition (1999).CrossRefGoogle Scholar
[Botto 1994] Botto, R. E., et al., “Selective chemical mapping of coal microheterogeneity by scanning transmission x-ray microscopy,” Energy and Fuels 8, 151-154 (1994).CrossRefGoogle Scholar
[Boutet 2012] Boutet, S., et al., “High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362-364 (2012).CrossRefGoogle ScholarPubMed
[Boyce 2002] Boyce, C., et al., “Organic chemical differentiation within fossil plant cell walls detected with x-ray spectromicroscopy,” Geology 30, 1039-1042 (2002).Google Scholar
[Boyce 2004] Boyce, C., et al., “Evolution of xylem lignification and hydrogel transport regulation,” Proc. Nat. Acad. Sci. 101, 17555-17558 (2004).CrossRefGoogle ScholarPubMed
[Bracewell 1986] Bracewell, R. N., The Fourier Transform and its Applications, McGraw-Hill, second revised edition (1986).Google Scholar
[Bragg 1913a] Bragg, W. H. and Bragg, W. L., “The reflection of x-rays by crystals,” Proc. Roy. Soc. Lon. A 88, 428-438 (1913).CrossRefGoogle Scholar
[Bragg 1913b] Bragg, W. L., “The structure of some crystals as indicated by their diffraction of x-rays,” Proc. Roy. Soc. Lon. A 89, 248-277 (1913).CrossRefGoogle Scholar
[Bragg 1929] Bragg, W. L., “An optical method for representing the results of x-ray analysis,” Zeitschrift für Kristallographie: Kristallgeometrie, Kristallphysik, Kristallchemie 70, 475-492 (1929).Google Scholar
[Bragg 1939] Bragg, W. L., “A new type of ‘x-ray microscope’,” Nature 143, 678-678 (1939).CrossRefGoogle Scholar
[Bragg 1942] Bragg, W. L., “The x-ray microscope,” Nature 149, 470-471 (1942).CrossRefGoogle Scholar
[Bragg 1950] Bragg, W. L., “Microscopy by reconstructed wave-fronts,” Nature 166, 399-400 (1950).CrossRefGoogle ScholarPubMed
[Bragg 1951] Bragg, W. L. and Rogers, G. L., “Elimination of the unwanted image in diffraction microscopy,” Nature 167, 190-191 (1951).CrossRefGoogle ScholarPubMed
[Braun 2004] Braun, A., et al., “A study of diesel PM with x-ray microspectroscopy,” Fuel 83, 997-1000 (2004).CrossRefGoogle Scholar
[Braun 2006] Braun, A., et al., “Photochemically induced decarboxylation in diesel soot extracts,” Atmospheric Environment 40, 5837-5844 (2006).CrossRefGoogle Scholar
[Braun 2009] Braun, A., et al., “Radiation damage from EELS and NEXAFS in diesel sooot and diesel soot extracts,” J. Electron Spect. Rel. Phenom. 170, 42-48 (2009).CrossRefGoogle Scholar
[Braun 2017] Braun, A., X-ray Studies on Electrochemical Systems: Synchrotron Methods for Energy Materials, De Gruyter (2017).CrossRefGoogle Scholar
[Breedlove Jr. 1970] Breedlove Jr., J. R. and Trammel, G., “Molecular microscopy: fundamental limitations,” Science 170, 1310-1313 (1970).Google Scholar
[Breitenberger 1955] Breitenberger, E., “Scintillation spectrometer statistics,” in Frisch, O., ed., Progress in Nuclear Physics, volume 4, 56-94, Pergamon, (1955).Google Scholar
[Brenner 2003] Brenner, D. J., et al., “Cancer risks attributable to low doses of ionizing radiation: assessing what we really know,” Proc. Nat. Acad. Sci. 100, 13761-13766 (2003).CrossRefGoogle ScholarPubMed
[Brisard 2012] Brisard, S., et al., “Morphological quantification of hierarchical geomaterials by x-ray nano-CT bridges the gap from nano to micro length scales,” Am. Mineral. 97, 480-483 (2012).CrossRefGoogle Scholar
[Broad 1986] Broad, W. J., Star Warriors, Touchstone (1986).Google Scholar
[Broennimann 2006] Broennimann, C., et al., “The PILA-TUS 1M detector,” J. Synch. Rad. 13, 120-130 (2006).CrossRefGoogle ScholarPubMed
[Brönnimann 2016] Brönnimann, C. and Trüb, P., “Hybrid pixel photon counting x-ray detectors for synchrotron radiation,” in [Jaeschke 2016], 995-1027.
[Brooks 1976] Brooks, R. A. and Di Chiro, G., “Beam hardening in x-ray reconstructive tomography,” Phys. Med. Bio. 21, 390-398 (1976).CrossRefGoogle ScholarPubMed
[Brouw 1975] Brouw, W. N., “Aperture synthesis,” in Alder, B., et al., eds., Radio Astronomy, 131-175, Academic Press, (1975).Google Scholar
[Brown Jr 2002] Brown Jr, G. E. and Sturchio, N. C., “An overview of synchrotron radiation applications to low temperature geochemistry and environment science,” Rev. Mineral. Geochem. 49, 1-115 (2002).Google Scholar
[Brown 1995] Brown, P., “Mihran Krikor Kassabian (1870-1910),” American Journal of Roentgenology 164, 1285-1289 (1995).Google Scholar
[Brown 2005] Brown, R. J. C. and Milton, M. J. T., “Analytical techniques for trace element analysis: an overview,” Trends Anal. Chem. 24, 266-274 (2005).CrossRefGoogle Scholar
[Brownlee 2006] Brownlee, D., et al., “Comet 81P/Wild 2 under a microscope,” Science 314, 1711-1716 (2006).CrossRefGoogle Scholar
[Brüggeller 1980] Brüggeller, P. and Mayer, E., “Complete vitrification in pure liquid water and dilute aqueous solutions,” Nature 288, 569-571 (1980).Google Scholar
[Brunetti 2004] Brunetti, A., et al., “A library for X-ray-matter interaction cross sections for X-ray fluorescence applications,” Spectrochimica Acta B 59, 1725-1731 (2004).CrossRefGoogle Scholar
[Bufon 2017] Bufon, J., et al., “Towards a multi-element silicon drift detector system for fluorescence spectroscopy in the soft x-ray regime,” X-ray Spect. 46, 313-318 (2017).CrossRefGoogle Scholar
[Bugeau 2010] Bugeau, A., et al., “A comprehensive framework for image inpainting,” IEEE Trans. Image Proc. 19, 2634-2645 (2010).CrossRefGoogle ScholarPubMed
[Bunch 2008] Bunch, J. S., et al., “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8, 2458-2462 (2008).CrossRefGoogle ScholarPubMed
[Bunk 2008] Bunk, O., et al., “Influence of the overlap parameter on the convergence of the ptychographical iterative engine,” Ultramicroscopy 108, 481-487 (2008).CrossRefGoogle ScholarPubMed
[Buonassisi 2005] Buonassisi, T., et al., “Engineering metal-impurity nanodefects for low-cost solar cells,” Nature Mater. 4, 676-679 (2005).CrossRefGoogle ScholarPubMed
[Burge 1993] Burge, R. E., “The interaction of x-rays,” in Michette, A. G. and Buckley, C. J., eds., X-ray Science and Technology, chapter 5, 160-206, Institute of Physics, (1993).Google Scholar
[Burkhardt 2012] Burkhardt, A., et al., “Fast high-pressure freezing of protein crystals in their mother liquor,” Acta Cryst. F 68, 495-500 (2012).CrossRefGoogle ScholarPubMed
[Burton 1935a] Burton, E. F. and Oliver, W. F., “The crystal structure of ice at low temperatures,” Proc. Roy. Soc. Lon. A 153, 166-172 (1935).Google Scholar
[Burton 1935b] Burton, E. F. and Oliver, W. F., “X-ray diffraction patterns of ice,” Nature 135, 505-506 (1935).CrossRefGoogle Scholar
[Burton 1952] Burton, M., “General discussion,” Discuss. Faraday Soc. 12, 317-318 (1952).Google Scholar
[Burvall 2011] Burvall, A., et al., “Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359-10376 (2011).CrossRefGoogle ScholarPubMed
[Buseck 2001] Buseck, P. R., et al., “Magnetite morphology and life on Mars,” Proc. Nat. Acad. Sci. 98, 13490-13495 (2001).CrossRefGoogle ScholarPubMed
[Cady 2003] Cady, S. L., et al., “Morphological biosigna-tures and the search for life on Mars,” Astrobiology 3, 351-368 (2003).CrossRefGoogle ScholarPubMed
[Cai 1999] Cai, Z. H., et al., “Synchrotron x-ray microd-iffraction diagnostics of multilayer optoelectronic devices,” Appl. Phys. Lett. 75, 100-102 (1999).CrossRefGoogle Scholar
[Cai 2004] Cai, M., “Madey v. Duke University: Shattering the myth of universities’ experimental use defense,” Berkeley Technology Law Journal 19, 175-192 (2004).Google Scholar
[Campbell 1998] Campbell, M., et al., “A readout chip for a 64×64 pixel matrix with 15-bit single photon counting,” IEEE Trans. Nucl. Sci. 45, 751-753 (1998).CrossRefGoogle Scholar
[Campbell 2012] Campbell, M. G., et al., “Movies of ice-embedded particles enhance resolution in electron cryo-microscopy,” Structure 20, 1823-1828 (2012).CrossRefGoogle ScholarPubMed
[Campo 2005] Campo, M. G. and Grigera, J. R., “Classical molecular-dynamics simulation of the hydroxyl radical in water,” J. Chem. Phys. 123, 084507-7 (2005).CrossRefGoogle ScholarPubMed
[Candès 2006] Candès, E. J., et al., “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics 59, 1207-1223 (2006).Google Scholar
[Capasso 1991] Capasso, C., et al., “High resolution x-ray microscopy using an undulator source: Photoelectron studies with MAXIMUM,” J. Vac. Sci. Tech. A 9, 1248-1253 (1991).CrossRefGoogle Scholar
[Carasso 1999] Carasso, A. S., “Linear and nonlinear image deblurring: A documented study,” SIAM J. Number. Anal. 36, 1659-1689 (1999).CrossRefGoogle Scholar
[Carey 2012] Carey, A.-M., et al., “A review of recent developments in the speciation and location of arsenic and selenium in rice grain,” Anal. Bioanal. Chem. 402, 3275-3286 (2012).Google ScholarPubMed
[Carlson 1975] Carlson, T. A., Photoelectron and Auger Spectroscopy, Plenum Press (1975).CrossRefGoogle Scholar
[Carpenter 2008] Carpenter, E. P., et al., “Overcoming the challenges of membrane protein crystallography,” Curr. Opin. Struct. Bio. 18, 581-586 (2008).CrossRefGoogle ScholarPubMed
[Carrascosa 2012] Carrascosa, J. L. and Glaeser, R. M., “Focused issue on x-ray microscopy of biological materials,” J. Struct. Bio. 177, 177-178 (2012).CrossRefGoogle ScholarPubMed
[Cartier 2016] Cartier, S., et al., “Micrometer-resolution imaging using MÖNCH: towards G2-less grating interferometry,” J. Synch. Rad. 23, 1462-1473 (2016).CrossRefGoogle ScholarPubMed
[Casadio 2013] Casadio, F. and Rose, V., “High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard x-ray nanoprobe applications to the paints of Pablo Picasso,” Appl. Phys. A 111, 1-8 (2013).CrossRefGoogle Scholar
[Casarett 1973] Casarett, A. P. and Comar, C. L., “Incapacitation and performance decrement in rats following split doses of fission spectrum radiation,” Radiat. Res. 53, 455-461 (1973).CrossRefGoogle ScholarPubMed
[Castillo-Michel 2017] Castillo-Michel, H. A., et al., “Practical review on the use of synchrotron based micro-and nano- x-ray fluorescence mapping and x-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials,” Plant Physiology et Biochemistry 110, 13-32 (2017).CrossRefGoogle ScholarPubMed
[Cats 2013] Cats, K. H., et al., “X-ray nanoscopy of cobalt Fischer-Tropsch catalysts at work,” Chemical Communications 49, 4622-4624 (2013).CrossRefGoogle ScholarPubMed
[Cauchois 1932] Cauchois, Y., “Spectrographie des rayons X par transmission d'un faisceau non canalisé à travers un cristal courbé (I),” Journal de Physique et Le Radium 3, 320-336 (1932).CrossRefGoogle Scholar
[Caussin 2013] Caussin, P., “Comparing existing MAC tables - hints to possible developments,” Powder Diffraction 28, 90-94 (2013).CrossRefGoogle Scholar
[Ceglio 1980] Ceglio, N. M., “X-ray and particle microscopy using Fresnel zone plates,” in [Ash 1980], 443-447.
[Ceglio 1983] Ceglio, N. M., et al., “X-ray phase lens design and fabrication,” J. Vac. Sci. Tech. B 1, 1285-1288 (1983).CrossRefGoogle Scholar
[Cesareo 1989] Cesareo, R. and Mascarenhas, S., “A new tomographic device based on the detection of fluorescent x-rays,” Nucl. Inst. Meth. Phys. Res. A 277, 669-672 (1989).CrossRefGoogle Scholar
[Cha 2016] Cha, W., et al., “Three dimensional variable-wavelength x-ray Bragg coherent diffraction imaging,” Phys. Rev. Lett. 117, 225501 (2016).CrossRefGoogle ScholarPubMed
[Chae 2013] Chae, S. R., et al., “Advanced nanoscale characterization of cement based materials using x-ray synchrotron radiation: a review,” Int. J. Concrete Struct. Mater. 7, 95-110 (2013).Google Scholar
[Chamard 2015] Chamard, V., et al., “Strain in a silicon-on-insulator nanostructure revealed by 3d x-ray Bragg pty-chography,” Sci. Rep. 5, 9827 (2015).CrossRefGoogle Scholar
[Chan 2004] Chan, C. S., et al., “Microbial polysaccharides template assembly of nanocrystal fibers,” Science 303, 1656-1658 (2004).CrossRefGoogle ScholarPubMed
[Chang 1978] Chang, L.-T., “A method for attenuation correction in radionuclide computed tomography,” IEEE Trans. Nucl. Sci. 25, 638-643 (1978).CrossRefGoogle Scholar
[Chang 2006] Chang, C., et al., “Single-element objective lens for soft x-ray differential interference contrast microscopy,” Opt. Lett. 31, 1564-1566 (2006).CrossRefGoogle ScholarPubMed
[Chang 2014] Chang, C. and Sakdinawat, A., “Ultra-high aspect ratio high-resolution nanofabrication for hard x-ray diffractive optics,” Nature Comm. 5, 4243 (2014).CrossRefGoogle ScholarPubMed
[Chantler 1995] Chantler, C. T., “Theoretical form factor, attenuation, and scattering tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV,” J. Phys. Chem. Ref. Data 24, 71-643 (1995).CrossRefGoogle Scholar
[Chantler 2000] Chantler, C. T., “Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft x-ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), addressing convergence issues of earlier work,” J. Phys. Chem. Ref. Data 29, 597-1048 (2000).CrossRefGoogle Scholar
[Chantler 2001] Chantler, C., “Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft x-ray (Z=30-36, Z=60-89, E=0.1-10 keV) - addressing convergence issues of earlier work,” J. Synch. Rad. 8, 1124 (2001).CrossRefGoogle ScholarPubMed
[Chao 2003] Chao, W., et al., “20-nm resolution soft x-ray microscopy demonstrated by use of multilayer test structures,” Opt. Lett. 28, 2019-2021 (2003).Google ScholarPubMed
[Chao 2005] Chao, W., et al., “Soft x-ray microscopy at a spatial resolution better than 15 nm,” Nature 435, 1210-1213 (2005).CrossRefGoogle Scholar
[Chao 2009a] Chao, W., et al., “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17, 17669-17677 (2009).CrossRefGoogle ScholarPubMed
[Chao 2009b] Chao, W., et al., “Hydrogen silsesquioxane double patterning process for 12 nm resolution x-ray zone plates,” J. Vac. Sci. Tech. B 27, 2606 (2009).CrossRefGoogle Scholar
[Chao 2012] Chao, W., et al., “Real space soft x-ray imaging at 10 nm spatial resolution,” Opt. Express 20, 9777-9783 (2012).CrossRefGoogle ScholarPubMed
[Chapiro 1962] Chapiro, A., Radiation Chemistry of Polymeric Systems, Interscience Publishers (1962).Google Scholar
[Chapman 1995] Chapman, H., et al., “Applications of a CCD detector in scanning transmission x-ray microscopy,” Rev. Sci. Inst. 66, 1332-1334 (1995).CrossRefGoogle Scholar
[Chapman 1996a] Chapman, D., et al., “Mammography imaging studies using a Laue crystal analyzer,” Rev. Sci. Inst. 67, 3360 (1996).CrossRefGoogle Scholar
[Chapman 1996b] Chapman, H. N., “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution,” Ul-tramicroscopy 66, 153-172 (1996).Google Scholar
[Chapman 1996c] Chapman, H. N., et al., “Dark-field x-ray microscopy of immunogold-labeled cells,” Microsc. Mi-croanal. 2, 53-62 (1996).Google Scholar
[Chapman 1996d] Chapman, H. N., et al., “A characteri-sation of dark-field imaging of colloidal gold labels in a scanning transmission X-ray microscope,” Ultrami-croscopy 62, 191-213 (1996).Google Scholar
[Chapman 1997a] Chapman, D., et al., “Diffraction enhanced x-ray imaging,” Phys. Med. Bio. 42, 2015-2025 (1997).CrossRefGoogle ScholarPubMed
[Chapman 1997b] Chapman, H., “Phase-retrieval x-ray microscopy by Wigner-distribution deconvolution: signal processing,” Scanning Microscopy 11, 67-80 (1997).Google Scholar
[Chapman 1999] Chapman, H. N., et al., “A shutter- photodiode combination for UV and soft x-ray beam-lines,” J. Synch. Rad. 6, 50 (1999).CrossRefGoogle Scholar
[Chapman 2006a] Chapman, H., et al., “Femtosecond diffractive imaging with a soft-x-ray free-electron laser,” Nature Phys. 2, 839-843 (2006).CrossRefGoogle Scholar
[Chapman 2006b] Chapman, H. N., et al., “High resolution ab initio three-dimensional x-ray diffraction microscopy,” J. Opt. Soc. Am. A 23, 1179-1200 (2006).CrossRefGoogle ScholarPubMed
[Chapman 2011] Chapman, H. N., et al., “Femtosecond x-ray protein nanocrystallography,” Nature 469, 73-77 (2011).Google Scholar
[Chaput 1970] Chaput, R. L. and Kovacic, R. T., “Miniature pig performance after fractionated supralethal doses of ionizing radiation,” Radiat. Res. 44, 807-820 (1970).CrossRefGoogle Scholar
[Chen 1990] Chen, C. T., et al., “Soft-x-ray magnetic circular dichroism at the L2,3 edges of nickel,” Phys. Rev. B 42, 7262-7265 (1990).Google ScholarPubMed
[Chen 1999] Chen, Y., “Inverse scattering via Heisenberg's uncertainty principle,” Inverse Probl. 13, 253-282 (1999).Google Scholar
[Chen 2002] Chen, W., et al., “Active pixel sensors on high-resistivity silicon and their readout,” IEEE Trans. Nucl. Sci. 49, 1006-1011 (2002).CrossRefGoogle Scholar
[Chen 2007] Chen, C.-C., et al., “Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input-output method,” Phys. Rev. B 76 (2007).CrossRefGoogle Scholar
[Chen 2014] Chen, S., et al., “The Bionanoprobe: hard x-ray fluorescence nanoprobe with cryogenic capabilities,” J. Synch. Rad. 21, 66-75 (2014).CrossRefGoogle ScholarPubMed
[Cheng 1987] Cheng, P. C. and Jan, G. J., eds., X-ray Microscopy: Instrumentation and Biological Applications, Springer-Verlag (1987).CrossRefGoogle Scholar
[Cheng 2015] Cheng, Y., “Single-particle cryo-EM at crystallographic resolution,” Cell 161, 450-457 (2015).CrossRefGoogle ScholarPubMed
[Cheng 2018] Cheng, C.-C., et al., “Correction of center of rotation and projection angle in synchrotron x-ray computed tomography,” Scientific Reports 8, 9884 (2018).CrossRefGoogle ScholarPubMed
[Chernov 1960] Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill (1960).
[Chervenak 1999] Chervenak, J. A., et al., “Superconducting multiplexer for arrays of transition edge sensors,” Appl. Phys. Lett. 74, 4043-4045 (1999).CrossRefGoogle Scholar
[Chichón 2012] Chichón, F. J., et al., “Cryo x-ray nano-tomography of vaccinia virus infected cells,” J. Struct. Bio. 177, 202-211 (2012).Google Scholar
[Chuang 2017] Chuang, Y.-D., et al., “Modular soft x-ray spectrometer for applications in energy sciences and quantum materials,” Rev. Sci. Inst. 88, 013110 (2017).CrossRefGoogle ScholarPubMed
[Church 1993] Church, E. L. and Takacs, P. Z., “Specification of surface figure and finish in terms of system performance,” App. Opt. 32, 3344-3353 (1993).Google ScholarPubMed
[Church 1995] Church, E. L. and Takacs, P. Z., “Specification of glancing- and normal-incidence x-ray mirrors,” Opt. Eng. 34, 353-360 (1995).CrossRefGoogle Scholar
[Clark 2011] Clark, J. N. and Peele, A. G., “Simultaneous sample and spatial coherence characterisation using diffractive imaging,” Appl. Phys. Lett. 99, 154103 (2011).CrossRefGoogle Scholar
[Clark 2013] Clark, J. N., et al., “Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrys-tals,” Science 341, 56-59 (2013).CrossRefGoogle Scholar
[Clark 2014] Clark, J. N., et al., “A continuous scanning mode for ptychography,” Opt. Lett. 39, 6066-6069 (2014).CrossRefGoogle ScholarPubMed
[Clarkson 1933] Clarkson, J. A. and Adams, C. R., “On definitions of bounded variation for functions of two variables,” Trans. Am. Math. Soc. 35, 824-824 (1933).CrossRefGoogle Scholar
[Cloetens 1996] Cloetens, P., et al., “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133-146 (1996).CrossRefGoogle Scholar
[Cloetens 1999a] Cloetens, P., et al., “Holotomogra-phy: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays,” Appl. Phys. Lett. 75, 2912-2914 (1999).CrossRefGoogle Scholar
[Cloetens 1999b] Cloetens, P., et al., “Quantitative phase tomography by holographic reconstruction,” Proc. SPIE 3772, 279-290 (1999).Google Scholar
[Clowney 2012] Clowney, E. J., et al., “Nuclear aggregation of olfactory receptor genes governs their monogenic expression,” Cell 151, 724-737 (2012).CrossRefGoogle ScholarPubMed
[Cochran 1951] Cochran, W., “Some properties of the (Fo - Fc)-synthesis,” Acta Cryst. 4, 408-411 (1951).CrossRefGoogle Scholar
[Codling 1965] Codling, K. and Madden, R. P., “Characteristics of the ‘synchrotron light’ from the NBS 180-MeV machine,” J. Appl. Phys. 36, 380-387 (1965).CrossRefGoogle Scholar
[Cody 1995] Cody, G. D., et al., “Inner-shell spectroscopy and imaging of a subbituminous coal: in-situ analysis of organic and inorganic microstructure using C(1s)-, Ca(2p)-, and Cl(2s)-NEXAFS,” Energy and Fuels 9, 525-533 (1995).CrossRefGoogle Scholar
[Cody 1996] Cody, G. D., et al., “The application of soft x-ray microscopy to the in-situ analysis of sporinite in coal,” Int. J. Coal Geo. 32, 69-86 (1996).Google Scholar
[Cody 2009] Cody, G., et al., “Soft x-ray induced chemical modification of polysaccharides in vascular plant cell walls,” J. Electron Spect. Rel. Phenom. 170, 57-64 (2009).CrossRefGoogle Scholar
[Coffey 2002] Coffey, T., et al., “Characterization of the effects of soft x-ray irradiation on polymers,” J. Electron Spect. Rel. Phenom. 122, 65-78 (2002).CrossRefGoogle Scholar
[Cohen 1984] Cohen, H. A., et al., “Estimates of validity of projection approximation for three-dimensional reconstructions at high resolution,” Ultramicroscopy 14, 219-226 (1984).CrossRefGoogle ScholarPubMed
[Coisson 1982] Coisson, R., et al., “Multipole wigglers as sources of synchrotron radiation,” Nucl. Inst. Meth. 201, 3-12 (1982).Google Scholar
[Coisson 1997] Coisson, R. and Marchesini, S., “Gauss- Schell sources as models for synchrotron radiation,” J. Synch. Rad. 4, 263-266 (1997).CrossRefGoogle ScholarPubMed
[Collinson 1963] Collinson, E., et al., “Electron multiplication in argon as a guide to mechanism in the radiation chemistry of n-butane,” Discuss. Faraday Soc. 36, 83-94 (1963).CrossRefGoogle Scholar
[Colson 1977] Colson, W. B., “One-body electron dynamics in a free electron laser,” Phys. Lett. A 64, 190-192 (1977).CrossRefGoogle Scholar
[Compton 1923] Compton, A. H., “The total reflexion of x-rays,” Phil. Mag. 45, 1121-1131 (1923).CrossRefGoogle Scholar
[Compton 1927] Compton, A. and Allison, S., X-rays in Theory and Experiment, D. Van Nostrand, first edition (1927).Google Scholar
[Compton 1935] Compton, A. and Allison, S., X-Rays in Theory and Experiment, D. Van Nostrand, second edition (1935).Google Scholar
[Conley 2008] Conley, R., et al., “Wedged multilayer Laue lens,” Rev. Sci. Inst. 79, 053104 (2008).CrossRefGoogle ScholarPubMed
[Conley 2016] Conley, R., et al., “Multilayer Laue lens: a brief history and current status,” Synch. Rad. News 29, (4), 16-20 (2016).Google Scholar
[Cooley 1965] Cooley, J. W. and Tukey, J.W., “An algorithm for the machine calculation of complex Fourier series,” Math Comput. 19, 297-301 (1965).CrossRefGoogle Scholar
[Cooper 1973] Cooper, J. A., “Comparison of particle and photon excited x-ray fluorescence applied to trace element measurements of environmental samples,” Nucl. Inst. Meth. 106, 525-538 (1973).CrossRefGoogle Scholar
[Corbett 2007] Corbett, M. C., et al., “Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation,” Acta Cryst. D 63, 951-960 (2007).CrossRefGoogle ScholarPubMed
[Cormack 1962] Cormack, A. M., “Dead-time losses with pulsed beams,” Nucl. Inst. Meth. 15, 268-272 (1962).CrossRefGoogle Scholar
[Cormack 1963] Cormack, A. M., “Representation of a function by its line integrals, with some radiological applications,” J. Appl. Phys. 34, 2722-2727 (1963).CrossRefGoogle Scholar
[Cormack 1964] Cormack, A. M., “Representation of a function by its line integrals, with some radiological applications. II,” J. Appl. Phys. 35, 2908-2913 (1964).CrossRefGoogle Scholar
[Cosier 1986] Cosier, J. and Glazer, A. M., “A nitrogen-gas-stream cryostat for general x-ray diffraction studies,” J. Appl. Cryst. 19, 105-107 (1986).CrossRefGoogle Scholar
[Cossio 2013] Cossio, P. and Hummer, G., “Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies,” J. Struct. Bio. 184, 427-437 (2013).CrossRefGoogle ScholarPubMed
[Cosslett 1951] Cosslett, V. E. and Nixon, W. C., “X-ray shadow microscope,” Nature 168, 24-25 (1951).CrossRefGoogle ScholarPubMed
[Cosslett 1952] Cosslett, V. E. and Nixon, W. C., “X-ray shadow microscopy,” Nature 170, 436-438 (1952).CrossRefGoogle ScholarPubMed
[Cosslett 1956] Cosslett, V. E. and Duncumb, P., “Microanalysis by a flying-spot x-ray method,” Nature 177, 1172-1173 (1956).CrossRefGoogle Scholar
[Cosslett 1957] Cosslett, V. E., et al., eds., International Symposium on X-ray Optics and X-ray Microanalysis, Academic Press (1957).Google Scholar
[Cosslett 1960] Cosslett, V. E. and Nixon, W. C., X-ray Microscopy, Cambridge University Press (1960).Google Scholar
[Coster 1935] Coster, D. and De L. Kronig, R., “New type of Auger effect and its influence on the x-ray spectrum,” Physica 2, 13-24 (1935).CrossRefGoogle Scholar
[Cotte 2017] Cotte, M., et al., “The ID21 x-ray and infrared microscopy beamline at the ESRF: status and recent applications to artistic materials,” J. Anal. Atomic Spectr. 32, 477-493 (2017).CrossRefGoogle Scholar
[Cotton 1992] Cotton, R. A., et al., “Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy,” Proc. SPIE 1941, 204-212 (1992).Google Scholar
[Courjon 1987] Courjon, D., et al., “Bilinear transfer in microscopy,” J. Mod. Opt. 34, 127-136 (1987).CrossRefGoogle Scholar
[Cova 2004] Cova, S., et al., “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267-1288 (2004).CrossRefGoogle Scholar
[Cowley 1957] Cowley, J. M. and Moodie, A. F., “The scattering of electrons by atoms and crystals. I. A new theoretical approach,” Acta Cryst. 10, 609-619 (1957).CrossRefGoogle Scholar
[Cowley 1981] Cowley, J. M., Diffraction Physics, North-Holland, second revised edition (1981).Google Scholar
[Cowley 1995] Cowley, J. M., Diffraction Physics, North-Holland, third revised edition (1995).Google Scholar
[Crawford 2019] Crawford, A. M., et al., “M-BLANK: a program for the fitting of x-ray fluorescence spectra,” J. Synch. Rad. 26, 497-503 (2019).CrossRefGoogle ScholarPubMed
[Crewe 1970] Crewe, A. V. and Wall, J., “Contrast in a high resolution scanning transmission electron microscope,” Optik 30, 461-474 (1970).Google Scholar
[Crimmins 1983] Crimmins, T. R. and Fienup, J. R., “Uniqueness of phase retrieval for functions with sufficiently disconnected support,” J. Opt. Soc. Am. 73, 218-221 (1983).CrossRefGoogle Scholar
[Cromer 1970] Cromer, D. T. and Liberman, D. A., “Relativistic calculation of anomalous scattering factors for x rays,” J. Chem. Phys. 53, 1891-1898 (1970).CrossRefGoogle Scholar
[Crowther 1970a] Crowther, R. A., et al., “Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs,” Nature 226, 421-425 (1970).CrossRefGoogle ScholarPubMed
[Crowther 1970b] Crowther, R. A., et al., “The reconstruction of a three-dimensional structure from projections and its application to electron microscopy,” Proc. Roy. Soc. Lon. A 317, 319-340 (1970).CrossRefGoogle Scholar
[Currie 1968] Currie, L. A., “Limits for qualitative detection and quantitative determination: application to radiochemistry,” Anal. Chem. 40, 586-593 (1968).CrossRefGoogle Scholar
[Curwood 2013] Curwood, E. K., et al., “Determining electronic damage to biomolecular structures in x-ray free-electron-laser imaging experiments,” Phys. Rev. A 87, 053407 (2013).CrossRefGoogle Scholar
[da Silva 2014] da Silva, J. C., et al., “Assessment of the 3 D pore structure and individual components of preshaped catalyst bodies by x-ray imaging,” ChemCatChem 7, 413-416 (2014).Google ScholarPubMed
[da Silva 2015] da Silva, J. C. and Menzel, A., “Elementary signals in ptychography,” Opt. Express 23, 33812-33821 (2015).CrossRefGoogle ScholarPubMed
[da Silva 2017] da Silva, J. C., et al., “Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution,” Optica 4, 492-495 (2017).Google Scholar
[Dahl 1989] Dahl, R. and Staehelin, L. A., “High-pressure freezing for the preservation of biological structure: theory and practice,” J. Electron Microsc. Tech. 13, 165-174 (1989).CrossRefGoogle ScholarPubMed
[Dainty 1974] Dainty, J. C. and Shaw, R., Image Science: Principles, Analysis and Evaluation of Photographic-type Imaging Processes, Academic Press (1974).Google Scholar
[Dam 2014] Dam, H. F., et al., “Enabling flexible polymer tandem solar cells by 3D ptychographic imaging,” Adv. Energy Mater. 5, 1400736 (2014).CrossRefGoogle Scholar
[Dambach 1998] Dambach, S., et al., “Novel interferometer in the soft x-ray region,” Phys. Rev. Lett. 80, 5473-5476 (1998).CrossRefGoogle Scholar
[Dardenne 2002] Dardenne, K., et al., “Low temperature XAFS investigation on the lutetium binding changes during the 2-line ferrihydrite alteration process,” Env. Sci. Tech. 36, 5092-5099 (2002).CrossRefGoogle ScholarPubMed
[Darrow 2017] Darrow, M. C., et al., “Volume segmentation and analysis of biological materials using SuRVoS (Super-region Volume Segmentation) workbench,” J. Vis. Exp. 126, e56162 (2017).Google Scholar
[Darwin 1914] Darwin, C. G., “The theory of x-ray reflexion,” Phil. Mag. 27, 315-333 (1914).Google Scholar
[DaSilva 1992] DaSilva, L. B., et al., “X-ray laser microscopy of rat sperm nuclei,” Science 258, 269-271 (1992).Google Scholar
[Daurer 2017] Daurer, B. J., et al., “Experimental strategies for imaging bioparticles with femtosecond hard x-ray pulses,” IUCrJ 4, 251-262 (2017).CrossRefGoogle ScholarPubMed
[David 2000] David, C., et al., “High-resolution lenses for sub-100 nm x-ray fluorescence microscopy,” Appl. Phys. Lett. 77, 3851-3853 (2000).CrossRefGoogle Scholar
[David 2011] David, C., et al., “Nanofocusing of hard x-ray free electron laser pulses using diamond based Fresnel zone plates,” Sci. Rep. 1, 57 (2011).CrossRefGoogle ScholarPubMed
[Davies 1954] Davies, H., “The reflection of electromagnetic waves from a rough surface,” Proc. Inst. Electr. Eng. 101, 209-214 (1954).Google Scholar
[Davies 2014] Davies, K. M., et al., “Copper pathology in vulnerable brain regions in Parkinson's disease,” Neurobiology of Aging 35, 858-866 (2014).CrossRefGoogle ScholarPubMed
[Davis 1995] Davis, T. J., et al., “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature 373, 595-598 (1995).CrossRefGoogle Scholar
[de Groot 2010] de Groot, F. M. F., et al., “In-situ scanning transmission x-ray microscopy of catalytic solids and related nanomaterials,” ChemPhysChem 11, 951-962 (2010).CrossRefGoogle ScholarPubMed
[de Jonge 2008] de Jonge, M. D., et al., “Quantitative phase imaging with a scanning transmission x-ray microscope,” Phys. Rev. Lett. 100, 163902 (2008).CrossRefGoogle ScholarPubMed
[de Jonge 2010a] de Jonge, M. D., et al., “Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolutions,” Proc. Nat. Acad. Sci. 107, 15676-15680 (2010).CrossRefGoogle Scholar
[de Jonge 2010b] de Jonge, M. D. and Vogt, S., “Hard x-ray fluorescence tomography - an emerging tool for structural visualization,” Curr. Opin. Struct. Bio. 20, 606-614 (2010).CrossRefGoogle ScholarPubMed
[de Jonge 2014] de Jonge, M. D., et al., “X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens,” J. Synch. Rad. 21, 1031-1047 (2014).CrossRefGoogle Scholar
[de Jonge 2016] de Jonge, M. D., et al., “Preface: The international conference on x-ray microscopy,” AIP Conf. Proc. 1696, 010001 (2016).Google Scholar
[de Jonge 2017] de Jonge, M. D., et al., “Spiral scanning x-ray fluorescence computed tomography,” Opt. Express 25, 23424-23436 (2017).CrossRefGoogle ScholarPubMed
[De Rosier 1968] De Rosier, D. J. and Klug, A., “Reconstruction of three dimensional structures from electron mi-crographs,” Nature 217, 130-134 (1968).CrossRefGoogle Scholar
[De Samber 2012] De Samber, B., et al., “Dual detection x-ray fluorescence cryotomography and mapping on the model organism Daphnia magna,” Powder Diffraction 25, 169-174 (2012).Google Scholar
[De Samber 2016] De Samber, B., et al., “Probing intracellular element concentration changes during neutrophil extracellular trap formation using synchrotron radiation based x-ray fluorescence,” PLoS ONE 11, e0165604 (2016).Google ScholarPubMed
[De Samber 2018] De Samber, B., et al., “Nanoscopic x-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich's ataxia fibroblasts,” PLoS ONE 13, e0190495 (2018).Google ScholarPubMed
[de Smit 2008] de Smit, E., et al., “Nanoscale chemical imaging of a working catalyst by scanning transmission x-ray microscopy,” Nature 456, 222-226 (2008).Google ScholarPubMed
[De Stasio 1993] De Stasio, G., et al., “Photoemission spec-tromicroscopy of neurons,” Phys. Rev. E 47, 2117-2121 (1993).CrossRefGoogle ScholarPubMed
[Deckman 1989] Deckman, H. W., et al., “Microfabrication cellular phosphors,” J. Vac. Sci. Tech. B 7, 1832-1835 (1989).CrossRefGoogle Scholar
[Deisenhofer 1985] Deisenhofer, J., et al., “Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution,” Nature 318, 618-624 (1985).CrossRefGoogle ScholarPubMed
[Dempsey 1976] Dempsey, G. P. and Bullivant, S., “A copper block method for freezing non-cryoprotected tissue to produce ice-crystal-free regions for electron microscopy. I. Evaluation using freeze-substitution,” J. Microsc. 106, 251-260 (1976).Google ScholarPubMed
[Dempster 1977] Dempster, A. P., et al., “Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Stat. Soc. B 39, 1-38 (1977).Google Scholar
[Denes 2009] Denes, P., et al., “A fast, direct x-ray detection charge-coupled device,” Rev. Sci. Inst. 80, 083302 (2009).CrossRefGoogle ScholarPubMed
[Denes 2014] Denes, P. and Schmitt, B., “Pixel detectors for diffraction-limited storage rings,” J. Synch. Rad. 21, 1006-1010 (2014).CrossRefGoogle ScholarPubMed
[Deng 2015a] Deng, J., et al., “Continuous motion scan pty-chography: characterization for increased speed in coherent x-ray imaging,” Opt. Express 23, 5438-5451 (2015).CrossRefGoogle ScholarPubMed
[Deng 2015b] Deng, J., et al., “Simultaneous cryo x-ray pty-chographic and fluorescence microscopy of green algae,” Proc. Nat. Acad. Sci. 112, 2314-2319 (2015).CrossRefGoogle ScholarPubMed
[Deng 2015c] Deng, J., et al., “Opportunities and limitations for combined fly-scan ptychography and fluorescence microscopy,” Proc. SPIE 9592, 95920U (2015).Google ScholarPubMed
[Deng 2017a] Deng, J., et al., “Nanoscale x-ray imaging of circuit features without wafer etching,” Phys. Rev. B 95, 104111 (2017).CrossRefGoogle ScholarPubMed
[Deng 2017b] Deng, J., et al., “X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning,” Sci. Rep. 7, 445 (2017).CrossRefGoogle ScholarPubMed
[Dengler 1989] Dengler, J., “A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles,” Ultramicroscopy 30, 337-348 (1989).CrossRefGoogle Scholar
[Deslattes 1969] Deslattes, R. D., “Estimates of x-ray attenuation coefficients for the elements and their compounds,” Acta Cryst. A 25, 89-93 (1969).CrossRefGoogle Scholar
[Deslattes 2003] Deslattes, R. D., et al., “X-ray transition energies: new approach to a comprehensive evaluation,” Rev. Mod. Phys. 75, 35-99 (2003).CrossRefGoogle Scholar
[Devaney 1982] Devaney, A. J., “A filtered backpropagation algorithm for diffraction tomography,” Ultrasonic Imaging 4, 336-350 (1982).CrossRefGoogle ScholarPubMed
[Dhez 2003] Dhez, O., et al., “Calibrated NEXAFS spectra of some common polymers,” J. Electron Spect. Rel. Phe-nom. 128, 85-96 (2003).Google Scholar
[Di Fabrizio 1994] Di Fabrizio, E., et al., “High-performance multilevel blazed x-ray microscopy Fresnel zone plates: fabricated using x-ray lithography,” J. Vac. Sci. Tech. B 12, 3979-3985 (1994).CrossRefGoogle Scholar
[Di Fabrizio 1999] Di Fabrizio, E. and Gentili, M., “X-ray multilevel zone plate fabrication by means of electron-beam lithography: toward high-efficiency performances,” J. Vac. Sci. Tech. B 17, 3439-3443 (1999).CrossRefGoogle Scholar
[Di 2017] Di, Z. W., et al., “Joint reconstruction of x-ray fluorescence and transmission tomography,” Opt. Express 25, 13107-13124 (2017).CrossRefGoogle ScholarPubMed
[Diaz 2008] Diaz, J., et al., “Marine polyphosphate: a key player in geologic phosphorus sequestration,” Science 320, 652-655 (2008).CrossRefGoogle ScholarPubMed
[Diaz 2012] Diaz, A., et al., “Quantitative x-ray phase nan-otomography,” Phys. Rev. B 85, 020104 (2012).CrossRefGoogle Scholar
[Diaz 2015] Diaz, A., et al., “Three-dimensional mass density mapping of cellular ultrastructure by ptychographic x-ray nanotomography,” J. Struct. Bio. 192, 461-469 (2015).CrossRefGoogle ScholarPubMed
[Dickson 1997] Dickson, R. M., et al., “On/off blinking and switching behaviour of single molecules of green fluorescent protein,” Nature 388, 355-358 (1997).CrossRefGoogle ScholarPubMed
[Dierolf 2010a] Dierolf, M., et al., “Ptychographic x-ray computed tomography at the nanoscale,” Nature 467, 436-439 (2010).CrossRefGoogle ScholarPubMed
[Dierolf 2010b] Dierolf, M., et al., “Ptychographic coherent diffractive imaging of weakly scattering specimens,” New J. Phys. 12, 035017 (2010).CrossRefGoogle Scholar
[Ding 2000] Ding, X., et al., “Monolithic polycapillary x-ray optics engineered to meet a wide range of applications,” Proc. SPIE 4144, 174-182 (2000).Google Scholar
[Dinklage 1963] Dinklage, J. and Frerichs, R., “X-ray diffraction and diffusion in metal film layered structures,” J. Appl. Phys. 34, 2633-2635 (1963).CrossRefGoogle Scholar
[Dinklage 1967] Dinklage, J. B., “X-ray diffraction by multilayered thin-film structures and their diffusion,” J. Appl. Phys. 38, 3781-3785 (1967).CrossRefGoogle Scholar
[Dodani 2011] Dodani, S. C., et al., “Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and x-ray fluorescence microscopy,” Proc. Nat. Acad. Sci. 108, 5980-5985 (2011).CrossRefGoogle ScholarPubMed
[Doering 2011] Doering, D., et al., “Annealing studies on x-ray and neutron irradiated CMOS monolithic active pixel sensors,” Nucl. Inst. Meth. Phys. Res. A 658, 133-136 (2011).CrossRefGoogle Scholar
[Doering 2016] Doering, D., et al., “CMOS-sensors for energy-resolved x-ray imaging,” J. Instrumentation 11, C01013 (2016).CrossRefGoogle Scholar
[Domke 1990] Domke, M., et al., “Carbon and oxygen K-edge photoionization of the CO molecule,” Chem. Phys. Lett. 173, 122-128 (1990).CrossRefGoogle Scholar
[Donath 2006] Donath, T., et al., “Automated determination of the center of rotation in tomography data,” J. Opt. Soc. Am. A 23, 1048-1057 (2006).CrossRefGoogle ScholarPubMed
[Donnelly 2017] Donnelly, C., et al., “Three-dimensional magnetization structures revealed with x-ray vector nan-otomography,” Nature 547, 328-331 (2017).CrossRefGoogle Scholar
[Donoho 2006] Donoho, D. L., “Compressed sensing,” IEEE Trans. Info. Theory 52, 1289-1306 (2006).CrossRefGoogle Scholar
[Döring 2013] Döring, F., et al., “Sub-5 nm hard x-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate,” Opt. Express 21, 19311-19323 (2013).CrossRefGoogle ScholarPubMed
[Dowd 1999] Dowd, B. A., et al., “Developments is synchrotron x-ray computed microtomography at the National Synchrotron Light Source,” Proc. SPIE 3772, 224-236 (1999).Google Scholar
[Dowell 1960] Dowell, L. G. and Rinfret, A. P., “Low-temperature forms of ice as studied by x-ray diffraction,” Nature 188, 1144-1148 (1960).CrossRefGoogle Scholar
[Drouin 2007] Drouin, D., et al., “CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29, 92-101 (2007).CrossRefGoogle ScholarPubMed
[Drude 1902] Drude, P., The Theory of Optics, Longmans, Green, and Co. (1902).Google Scholar
[Du 2018] Du, M. and Jacobsen, C., “Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials,” Ultramicroscopy 184, 293-309 (2018).CrossRefGoogle ScholarPubMed
[Duane 1920] Duane, W. and Patterson, R. A., “On the x-ray spectra of tungsten,” Phys. Rev. 16, 526-539 (1920).CrossRefGoogle Scholar
[Duane 1923] Duane, W., “The transfer in quanta of radiation momentum to matter,” Proc. Nat. Acad. Sci. 9, 158-164 (1923).CrossRefGoogle ScholarPubMed
[Duane 1925] Duane, W., “The calculation of the x-ray diffracting power at points in a crystal,” Proc. Nat. Acad. Sci. 11, 489-493 (1925).CrossRefGoogle Scholar
[Dubochet 1981a] Dubochet, J., et al., “Reduction of beam damage by cryoprotection at 4 K,” Ultramicroscopy 6, 77-80 (1981).CrossRefGoogle Scholar
[Dubochet 1981b] Dubochet, J. and McDowall, A. W., “Vitrification of pure water for electron microscopy,” J. Mi-crosc. 124, RP3-RP4 (1981).Google Scholar
[Dubochet 1982] Dubochet, J., et al., “Electron-microscopy of frozen water and aqueous-solutions,” J. Microsc. 128, 219-237 (1982).CrossRefGoogle Scholar
[Dubochet 1983] Dubochet, J., et al., “Amorphous solid water obtained by vapour condensation or by liquid cooling: a comparison in the electron microscope,” Cryo-Letters 4, 233-240 (1983).Google Scholar
[Dubochet 1988] Dubochet, J., et al., “Cryo-electron microscopy of vitrified specimens,” Q. Rev. Biophys. 21, 129-228 (1988).CrossRefGoogle ScholarPubMed
[Dubochet 2011] Dubochet, J., “Cryo-EM - the first thirty years,” J. Microsc. 245, 221-224 (2011).Google Scholar
[Dubochet 2016] Dubochet, J., “A reminiscence about early times of vitreous water in electron cryomicroscopy,” Bio-phys. J. 110, 756-757 (2016).Google ScholarPubMed
[Duchenois 1985] Duchenois, V., et al., “High-resolution luminescent screens for image intensifier tubes,” Adv. Imaging Electron Phys. 64B, 365-371 (1985).Google Scholar
[Duckworth 2011] Duckworth, T. A., et al., “Magnetic imaging by x-ray holography using extended references,” Opt. Express 19, 16223-16228 (2011).CrossRefGoogle ScholarPubMed
[Dudin 2010] Dudin, P., et al., “Angle-resolved photoe-mission spectroscopy and imaging with a submicrometre probe at the SPECTROMICROSCOPY-3.2L beamline of Elettra,” J. Synch. Rad. 17, 445-450 (2010).CrossRefGoogle ScholarPubMed
[Dufresne 2001] Dufresne, E. M., et al., “Lithium metal for x-ray refractive optics,” Appl. Phys. Lett. 79, 4085-4087 (2001).CrossRefGoogle Scholar
[Duke 2014] Duke, E., et al., “Biological applications of cryo-soft x-ray tomography,” J. Microsc. 255, 65-70 (2014).Google ScholarPubMed
[DuMond 1930] DuMond, J. W. M. and Kirkpatrick, H. A., “The multiple crystal x-ray spectrograph,” Rev. Sci. Inst. 1, 88-105 (1930).CrossRefGoogle Scholar
[DuMond 1935] DuMond, J. W. M. and Youtz, J. P., “Selective x-ray diffraction from artificially stratified metal films deposited by evaporation,” Phys. Rev. 48, 703 (1935).CrossRefGoogle Scholar
[DuMond 1940] DuMond, J. and Youtz, J. P., “An x-ray method of determining rates of diffusion in the solid state,” J. Appl. Phys. 11, 357-365 (1940).CrossRefGoogle Scholar
[Duncumb 1957] Duncumb, P. and Cosslett, V. E., “A scanning microscope for x-ray emission pictures,” in Cosslett, V. E., et al., eds., X-ray Microscopy and Microradiogra-phy, 374-380, Academic Press, (1957).Google Scholar
[Dyson 1973] Dyson, N., X-rays in Atomic and Nuclear Physics, Prentice Hall (1973).
[Dzhigaev 2017] Dzhigaev, D., et al., “X-ray Bragg ptychog-raphy on a single InGaN/GaN core-shell nanowire,” ACS Nano 11, 6605-6611 (2017).CrossRefGoogle ScholarPubMed
[Dzubay 1974] Dzubay, T. G., et al., “Background reduction in x-ray fluorescence spectra using polarization,” Nucl. Inst. Meth. 115, 297-299 (1974).CrossRefGoogle Scholar
[Eberl 2014] Eberl, C., et al., “Fabrication of laser deposited high-quality multilayer zone plates for hard x-ray nanofo-cusing,” App. Surf. Sci. 307, 638-644 (2014).CrossRefGoogle Scholar
[Echlin 1992] Echlin, P., Low-Temperature Microscopy and Analysis, Plenum (1992).
[Edholm 1986] Edholm, P. R., et al., “Novel properties of the Fourier decomposition of the sinogram,” Proc. SPIE 671, 8-18 (1986).Google Scholar
[Edo 2013] Edo, T. B., et al., “Sampling in x-ray ptychogra-phy,” Phys. Rev. A 87, 053850 (2013).CrossRefGoogle Scholar
[Efros 1999] Efros, A. A. and Leung, T. K., “Texture synthesis by non-parametric sampling,” in Werner, B., ed., Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 2, IEEE Computer Society, 1033-1038 (1999).Google Scholar
[Egerton 2019] Egerton, R. F., “Radiation damage to organic and inorganic specimens in the TEM,” Micron 119, 72-87 (2019).CrossRefGoogle ScholarPubMed
[Eggl 2016] Eggl, E., et al., “The Munich Compact Light Source: initial performance measures,” J. Synch. Rad. 23, 1137-1142 (2016).CrossRefGoogle ScholarPubMed
[Ehrenberg 1947] Ehrenberg, W., “X-ray optics,” Nature 160, 330 (1947).CrossRefGoogle ScholarPubMed
[Ehrenberg 1949] Ehrenberg, W., “X-ray optics: the production of converging beams by total reflection,” J. Opt. Soc. Am. 39, 741-746 (1949).CrossRefGoogle ScholarPubMed
[Einstein 1905] Einstein, A., “Zur Elektrodynamik bewegter Körper,” Annalen der Physik 17, 891-921 (1905).Google Scholar
[Einstein 1918] Einstein, A., “Lassen sich Brechungsexpo-nenten der korper für Röntgenstrahlen experimentell er-mitteln?,” Verhandlungen der Deutschen Physikalischen Gesellschaft 9, 86-87 (1918).Google Scholar
[Eisberg 1964] Eisberg, R. M., Fundamentals of Modern Physics, Wiley (1964).
[Eisebitt 2004] Eisebitt, S., et al., “Lensless imaging of magnetic nanostructures by x-ray spectro-holography,” Nature 432, 885-888 (2004).CrossRefGoogle ScholarPubMed
[Eisenberger 1975] Eisenberger, P. and Kincaid, B. M., “Synchrotron radiations studies of x-ray absorption spectra of ions in aqueous solutions,” Chem. Phys. Lett. 36, 134-136 (1975).CrossRefGoogle Scholar
[Ekeberg 2015] Ekeberg, T., et al., “Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser,” Phys. Rev. Lett. 114, 098102 (2015).CrossRefGoogle ScholarPubMed
[El-Sum 1952] El-Sum, H. M. A. and Kirkpatrick, P., “Microscopy by reconstructed wavefronts,” Phys. Rev. 85, 763 (1952).Google Scholar
[Elam 2002] Elam, W. T., et al., “A new atomic database for x-ray spectroscopic calculations,” Radiat. Phys. Chem. 63, 121-128 (2002).CrossRefGoogle Scholar
[Elder 1947] Elder, F. R., et al., “Radiation from electrons in a synchrotron,” Phys. Rev. 71, 829-830 (1947).CrossRefGoogle Scholar
[Eldrup 1985] Eldrup, M., et al., “Positronium formation and diffusion in crystalline and amorphous ice using a variable-energy positron beam,” Phys. Rev. B 32, 7048-7064 (1985).CrossRefGoogle ScholarPubMed
[Elleaume 1998] Elleaume, P., “Optimization of compound refractive lenses for x-rays,” Nucl. Inst. Meth. Phys. Res. A 412, 483-506 (1998).CrossRefGoogle Scholar
[Elleaume 2003] Elleaume, P., “Undulator radiation,” in [Onuki 2003], 69-107.
[Elser 2003] Elser, V., “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40-55 (2003).CrossRefGoogle ScholarPubMed
[Elser 2008] Elser, V. and Millane, R. P., “Reconstruction of an object from its symmetry-averaged diffraction pattern,” Acta Cryst. A 64, 273-279 (2008).CrossRefGoogle ScholarPubMed
[Emma 2010] Emma, P., et al., “First lasing and operation of an ångstrom-wavelength free-electron laser,” Nature Photonics 4, 641-647 (2010).CrossRefGoogle Scholar
[Enders 2014] Enders, B., et al., “Ptychography with broad-bandwidth radiation,” Appl. Phys. Lett. 104, 171104 (2014).CrossRefGoogle Scholar
[Eng 1998] Eng, P. J., et al., “Dynamically figured Kirkpatrick Baez x-ray micro-focusing optics,” Proc. SPIE 3449, 145-156 (1998).Google Scholar
[Engel 1974] Engel, A., “The principle of reciprocity and its application to conventional and scanning dark field electron microscopy,” Optik 41, 117-126 (1974).Google Scholar
[Engström 1946a] Engström, A., “Quantitative micro- and histochemical elementary analysis by Röntgen absorption spectrography,” Acta Radiologica 27, 1-106 (1946).Google Scholar
[Engström 1946b] Engström, A., “Quantitative microchemi-cal and histochemical analysis of elements by x-rays,” Nature 158, 664-665 (1946).CrossRefGoogle ScholarPubMed
[Engström 1947] Engström, A., “A new differential x-ray absorption method for elementary chemical analysis,” Rev. Sci. Inst. 18, 681-682 (1947).CrossRefGoogle Scholar
[Engström 1960] Engström, A., et al., eds., X-ray Microscopy and X-ray Microanalysis, Elsevier (1960).
[Engström 1980] Engström, A., “X-ray microscopy, past, present, and future,” Ann. NY Acad. Sci. 342, 392-400 (1980).CrossRefGoogle Scholar
[Epstein 1924] Epstein, P. S. and Ehrenfest, P., “The quantum theory of the Fraunhofer diffraction,” Proc. Nat. Acad. Sci. 10, 133-139 (1924).CrossRefGoogle ScholarPubMed
[Eränkö 1954] Eränkö, O., “Quenching of tissues for freeze-drying,” Acta Anatomica 22, 331-336 (1954).Google ScholarPubMed
[Ercan 2006] Ercan, A., et al., “Analog pixel array detectors,” J. Synch. Rad. 13, 110-119 (2006).CrossRefGoogle ScholarPubMed
[Ercius 2006] Ercius, P., et al., “Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography,” Appl. Phys. Lett. 88, 243116-1-3 (2006).CrossRefGoogle Scholar
[Eriksson 2008] Eriksson, F., et al., “Atomic scale interface engineering by modulated ion-assisted deposition applied to soft x-ray multilayer optics,” App. Opt. 47, 4196 (2008).CrossRefGoogle ScholarPubMed
[Eriksson 2014] Eriksson, M., et al., “Diffraction-limited storage rings - a window to the science of tomorrow,” J. Synch. Rad. 21, 837-842 (2014).CrossRefGoogle Scholar
[Erni 2009] Erni, R., et al., “Atomic-resolution imaging with a sub-50-pm electron probe,” Phys. Rev. Lett. 102, 096101 (2009).CrossRefGoogle ScholarPubMed
[Evans-Lutterodt 2003] Evans-Lutterodt, K., et al., “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11, 919-926 (2003).CrossRefGoogle ScholarPubMed
[Evans-Lutterodt 2004] Evans-Lutterodt, K., et al., “Energy-dependent focusing properties of a kinoform Fresnel lens,” Proc. SPIE 5539, 73-79 (2004).Google Scholar
[Evans 2002] Evans, P. G., et al., “X-ray microdiffrac-tion images of antiferromagnetic domain evolution in chromium,” Science 295, 1042-1045 (2002).CrossRefGoogle ScholarPubMed
[Ewald 1913] Ewald, P. P., “Zur Theorie der Interferen-zen der Röntgenstrahlen in Kristallen,” Physikalische Zeitschrift 14, 465-472 (1913).Google Scholar
[Ewald 1969] Ewald, P. P., “Introduction to the dynamical theory of x-ray diffraction,” Acta Cryst. A 25, 103-108 (1969).CrossRefGoogle Scholar
[Fahrni 2007] Fahrni, C., “Biological applications of x-ray fluorescence microscopy: exploring the subcellu-lar topography and speciation of transition metals,” Curr. Opin. Chem. Bio. 11, 121-127 (2007).CrossRefGoogle Scholar
[Falch 2018] Falch, K. V., et al., “Zernike phase contrast in high-energy x-ray transmission microscopy based on refractive optics,” Ultramicroscopy 184, 267-273 (2018).CrossRefGoogle ScholarPubMed
[Falcone 2011] Falcone, R., et al., “New directions in x-ray microscopy,” Contemporary Physics 52, 293-318 (2011).CrossRefGoogle Scholar
[Fano 1947] Fano, U., “Ionization yield of radiations. II. The fluctuations of the number of ions,” Phys. Rev. 72, 26-29 (1947).CrossRefGoogle Scholar
[Farmand 2017] Farmand, M., et al., “Near-edge x-ray refraction fine structure microscopy,” Appl. Phys. Lett. 110, 063101 (2017).CrossRefGoogle Scholar
[Faulkner 2004] Faulkner, H. M. L. and Rodenburg, J., “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. Rev. Lett. 93, 023903 (2004).CrossRefGoogle ScholarPubMed
[Feder 1976] Feder, R., et al., “Specimen replication for electron microscopy using x rays and x-ray resist,” J. Appl. Phys. 47, 1192-1193 (1976).CrossRefGoogle Scholar
[Feder 1977] Feder, R., et al., “High-resolution soft x-ray microscopy,” Science 197, 259-260 (1977).CrossRefGoogle ScholarPubMed
[Feder 1985] Feder, R., et al., “Direct imaging of live human platelets by flash x-ray microscopy,” Science 227, 63-64 (1985).CrossRefGoogle ScholarPubMed
[Feldkamp 1984] Feldkamp, L. A., et al., “Practical cone-beam algorithm,” J. Opt. Soc. Am. A 1, 612-619 (1984).CrossRefGoogle Scholar
[Feng 2007a] Feng, J. and Scholl, A., “Photoemission electron microscopy (PEEM),” In Science of Microscopy [Hawkes 2007], 657-695.
[Feng 2007b] Feng, Y., et al., “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Tech. B 25, 2004-2007 (2007).CrossRefGoogle Scholar
[Fenter 2006] Fenter, P. A., et al., “Observation of subnanometre-high surface topography with x-ray reflection phase-contrast microscopy,” Nature Phys. 2, 700-704 (2006).CrossRefGoogle Scholar
[Fernández-Pacheco 2017] Fernández-Pacheco, A., et al., “Three-dimensional nanomagnetism,” Nature Comm. 8, 15756 (2017).CrossRefGoogle Scholar
[Ferrero 2008] Ferrero, C., et al., “Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics,” App. Opt. 47, E116- E124 (2008).Google ScholarPubMed
[Feser 1998] Feser, M., et al., “Applications and instrumentation advances with the Stony Brook scanning transmission x-ray microscope,” Proc. SPIE 3449, 19-29 (1998).Google Scholar
[Feser 2002] Feser, M. “Scanning transmission x-ray microscopy with a segmented detector,” PhD thesis, Department of Physics and Astronomy, Stony Brook University, (2002).Google Scholar
[Feser 2006] Feser, M., et al., “Integrating silicon detector with segmentation for scanning transmission x-ray microscopy,” Nucl. Inst. Meth. Phys. Res. A 565, 841-854 (2006).CrossRefGoogle Scholar
[Feser 2008] Feser, M., et al., “Sub-micron resolution CT for failure analysis and process development,” Meas. Sci. Tech. 19, 094001 (2008).CrossRefGoogle Scholar
[Feser 2012] Feser, M., et al., “Advantages of a synchrotron bending magnet as the sample illuminator for a wide-field x-ray microscope,” J. Synch. Rad. 19, 751-758 (2012).CrossRefGoogle ScholarPubMed
[Fezzaa 2008] Fezzaa, K. and Wang, Y., “Ultrafast x-ray phase-contrast imaging of the initial coalescence phase of two water droplets,” Phys. Rev. Lett. 100, 104501 (2008).CrossRefGoogle ScholarPubMed
[Fienup 1978] Fienup, J. R., “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27-29 (1978).CrossRefGoogle ScholarPubMed
[Fienup 1982a] Fienup, J. R., “Phase retrieval algorithms: a comparison,” App. Opt. 21, 2758-2769 (1982).Google ScholarPubMed
[Fienup 1982b] Fienup, J. R., et al., “Reconstruction of the support of an object from the support of its autocorrelation,” J. Opt. Soc. Am. 72, 610-624 (1982).CrossRefGoogle Scholar
[Fienup 1987] Fienup, J., “Reconstruction of a complex-valued object from the modulus of its Fourier-transform using a support constraint,” J. Opt. Soc. Am. A 4, 118-123 (1987).CrossRefGoogle Scholar
[Fienup 1990] Fienup, J. R. and Kowalczyk, A. M., “Phase retrieval for a complex-valued object by using a low-resolution image,” J. Opt. Soc. Am. A 7, 450-458 (1990).CrossRefGoogle Scholar
[Fienup 2013] Fienup, J. R., “Phase retrieval algorithms: a personal tour,” App. Opt. 52, 45-56 (2013).Google ScholarPubMed
[Finch 2008] Finch, J., A Nobel Fellow on Every Floor: A History of the Medical Research Council Laboratory of Molecular Biology, Medical Research Council Laboratory of Molecular Biology (2008).Google Scholar
[Finne 1967] Finne, R. M. and Klein, D. L., “A water-amine-complexing agent system for etching silicon,” J. Electrochem. Soc. 114, 965-6 (1967).CrossRefGoogle Scholar
[Fischer 1966] Fischer, D. W. and Baun, W. L., “The effect of chemical combination on some soft x-ray K and L emission spectra,” in [Mallett 1966], 329-343.
[Fischer 1996] Fischer, P., et al., “Imaging of magnetic domains with the x-ray microscope at BESSY using x-ray magnetic circular dichroism,” Zeitschrift für Physik B 101, 313-316 (1996).Google Scholar
[Fischer 2015] Fischer, P. and Ohldag, H., “X-rays and magnetism,” Rep. Prog. Phys. 78, 094501-27 (2015).CrossRefGoogle ScholarPubMed
[Fish 1995] Fish, D. A., et al., “Blind deconvolution by means of the Richardson-Lucy algorithm,” J. Opt. Soc. Am. A 12, 58 (1995).CrossRefGoogle Scholar
[Flannery 1987] Flannery, B. P., et al., “Three-dimensional x-ray tomography,” Science 237, 1439-1444 (1987).CrossRefGoogle Scholar
[Fleming 2014] Fleming, A. J. and Leang, K. K., Design, Modeling and Control of Nanopositioning Systems, Springer (2014).CrossRefGoogle Scholar
[Flynn 2003] Flynn, G., et al., “The origin of organic matter in the solar system: evidence from the interplanetary dust particles,” Geochimica et Cosmochimica Acta 67, 4791-4806 (2003).CrossRefGoogle Scholar
[Flynn 2006] Flynn, G. J., et al., “Elemental compositions of comet 81P/Wild 2 samples collected by Stardust,” Science 314, 1731-1735 (2006).CrossRefGoogle ScholarPubMed
[Fogelqvist 2017] Fogelqvist, E., et al., “Laboratory cryo x-ray microscopy for 3D cell imaging,” Sci. Rep. 7, 13433 (2017).CrossRefGoogle ScholarPubMed
[Fontana Jr. 2018] Fontana Jr., R. E. and Decad, G. M., “Moore's law realities for recording systems and memory storage components: HDD, tape, NAND, and optical,” AIP Advances 8, 056506 (2018).Google Scholar
[Ford 1992] Ford, T. W., et al., “Effects of soft x-ray irradiation on cell ultrastructure,” Proc. SPIE 1741, 325-332 (1992).Google Scholar
[Ford 2015] Ford, K. W., Building the H Bomb: A Personal History, World Scientific (2015).
[Frank 1975a] Frank, J., “Averaging of low exposure electron micrographs of non-periodic objects,” Ultrami-croscopy 1, 159-162 (1975).Google ScholarPubMed
[Frank 1975b] Frank, J. and Al-Ali, L., “Signal-to-noise ratio of electron micrographs obtained by cross correlation,” Nature 256, 376-379 (1975).CrossRefGoogle ScholarPubMed
[Frank 1981] Frank, J., et al., “Computer averaging of electron micrographs of 40S ribosomal subunits,” Science 214, 1353-1355 (1981).CrossRefGoogle ScholarPubMed
[Frank 1988] Frank, J., et al., “A new non-crystallographic image-processing technique reveals the architecture of ribosomes,” Trends Biochem. Sci. 13, 123-127 (1988).CrossRefGoogle ScholarPubMed
[Frank 2002] Frank, J., “Single-particle imaging of macromolecules by cryo-electron microscopy,” Ann. Rev. Bio-phys. Biomol. Struct. 31, 303-319 (2002).Google ScholarPubMed
[Fraser 1989] Fraser, G. W., X-ray Detectors in Astronomy, Cambridge University Press (1989).CrossRefGoogle Scholar
[Fraser 1994] Fraser, G. W., et al., “The x-ray energy response of silicon. Part A. Theory,” Nucl. Inst. Meth. Phys. Res. A 350, 368-378 (1994).CrossRefGoogle Scholar
[French 1966] French, A. P., Vibrations and Waves, W. W. Norton & Company (1966).Google Scholar
[Friedel 1913] Friedel, G., “Sur les symétries cristallines que peut révéler la diffraction des rayons Röntgen,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 157, 1533-1536 (1913).Google Scholar
[Frieden 1972] Frieden, B. R., “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, 511-8 (1972).CrossRefGoogle ScholarPubMed
[Friedman 1992] Friedman, S. L. and Rodenburg, J. M., “Optical demonstration of a new principle of far-field microscopy,” J. Phys. D 25, 147-154 (1992).CrossRefGoogle Scholar
[Friedrich 1912] Friedrich, W., et al., “Interferenz-Erscheinungen bei Röntgenstrahlen,” Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften Mathematisch-Physikalische Klaser 42, 303-322 (1912).Google Scholar
[Friedrich 1913] Friedrich, W., et al., “Interferenzerschein-ungen bei Röngtenstrahlen,” Annalen der Physik 41, 971-988 (1913).Google Scholar
[Fuhse 2006] Fuhse, C. and Salditt, T., “Finite-difference field calculations for two-dimensionally confined x-ray waveguides,” App. Opt. 45, 4603-4608 (2006).Google ScholarPubMed
[Fujita 1989] Fujita, S., et al., “The LD50 associated with exposure to the atomic bombing of Hiroshima,” J. Ra-diat. Res. 30, 359-381 (1989).Google ScholarPubMed
[Fulton 1982] Fulton, A. B., “How crowded is the cytoplasm?,” Cell 30, 345-347 (1982).CrossRefGoogle ScholarPubMed
[Gabor 1942] Gabor, D., “Electron lenses,” Nature 150, 650-652 (1942).CrossRefGoogle Scholar
[Gabor 1948] Gabor, D., “A new microscopic principle,” Nature 161, 777-778 (1948).CrossRefGoogle ScholarPubMed
[Gabor 1949] Gabor, D., “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. Lon. A 197, 454-487 (1949).Google Scholar
[Gallo 2016] Gallo, P., et al., “Water: a tale of two liquids,” Chem. Rev. 116, 7463-7500 (2016).CrossRefGoogle ScholarPubMed
[Gardner 2017] Gardner, D. F., et al., “Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source,” Nature Photonics 11, 259-263 (2017).CrossRefGoogle Scholar
[Garlick 1958] Garlick, G. F. J., “Luminescence,” in Flügge, S., ed., Light and Matter II, 1-128, Springer-Verlag, (1958).Google Scholar
[Garman 1999] Garman, E., “Cool data: quantity AND quality,” Acta Cryst. D 55, 1641-1653 (1999).CrossRefGoogle ScholarPubMed
[Garman 2006] Garman, E. F. and Owen, R. L., “Cryocool-ing and radiation damage in macromolecular crystallography,” Acta Cryst. D 62, 32-47 (2006).CrossRefGoogle ScholarPubMed
[Garman 2017] Garman, E. F. and Weik, M., “X-ray radiation damage to biological macromolecules: further insights,” J. Synch. Rad. 24, 0 (2017).CrossRefGoogle ScholarPubMed
[Garrett 2005] Garrett, B. C., et al., “Role of water in electron-initiated processes and radical chemistry: issues and scientific advances,” Chem. Rev. 105, 355-389 (2005).CrossRefGoogle ScholarPubMed
[Garrevoet 2014] Garrevoet, J., et al., “Methodology toward 3D micro x-ray fluorescence imaging using an energy dispersive charge-coupled device detector,” Anal. Chem. 86, 11826-11832 (2014).CrossRefGoogle ScholarPubMed
[Gartner 2000] Gartner, E. M., et al., “Proposed mechanism of C-S-H growth tested by soft x-ray microscopy,” Cement Concrete Res. 30, 817-822 (2000).CrossRefGoogle Scholar
[Geissler 2001] Geissler, P. L., et al., “Autoionization in liquid water,” Science 291, 2121-2124 (2001).CrossRefGoogle ScholarPubMed
[George 2010] George, S. M., “Atomic layer deposition: An overview,” Chem. Rev. 110, 111-131 (2010).CrossRefGoogle ScholarPubMed
[George 2012] George, G. N., et al., “X-ray-induced photochemistry and x-ray absorption spectroscopy of biological samples,” J. Synch. Rad. 19, 875-886 (2012).CrossRefGoogle Scholar
[Gerchberg 1971] Gerchberg, R. W. and Saxton, W. O., “Phase determination from image and diffraction plane pictures in the electron microscope,” Optik 34, 275-284 (1971).Google Scholar
[Gerchberg 1972a] Gerchberg, R. W., “Holography without fringes in the electron microscope,” Nature 240, 404-406 (1972).CrossRefGoogle ScholarPubMed
[Gerchberg 1972b] Gerchberg, R. W. and Saxton, W. O., “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237-246 (1972).Google Scholar
[Germer 1986] Germer, R. and Meyer-Ilse, W., “X-ray TV camera at 4.5 nm,” Rev. Sci. Inst. 57, 426-427 (1986).CrossRefGoogle Scholar
[Ghazal 2016] Ghazal, A., et al., “Recent advances in x-ray compatible microfluidics for applications in soft materials and life sciences,” Lab on a Chip 16, 4263-4295 (2016).CrossRefGoogle ScholarPubMed
[Giacovazzo 1998] Giacovazzo, C., Direct Phasing in Crystallography: Fundamentals and Applications, Oxford University Press (1998).Google Scholar
[Gibson 1992] Gibson, W. M. and Kumakhov, M. A., “Applications of x-ray and neutron capillary optics,” Proc. SPIE 1736, 172-189 (1992).Google Scholar
[Giewekemeyer 2010] Giewekemeyer, K., et al., “Quantitative biological imaging by ptychographic x-ray diffraction microscopy,” Proc. Nat. Acad. Sci. 107, 529-534 (2010).CrossRefGoogle ScholarPubMed
[Giewekemeyer 2019] Giewekemeyer, K., et al., “Experimental 3D coherent diffractive imaging from photon-sparse random projections,” IUCrJ 6, 357-365 (2019).CrossRefGoogle ScholarPubMed
[Gilbert 1972] Gilbert, P., “Iterative methods for the three-dimensional reconstruction of an object from projections,” J. Theor. Bio. 36, 105-117 (1972).CrossRefGoogle ScholarPubMed
[Gilles 2018] Gilles, M. A., et al., “3D x-ray imaging of continuous objects beyond the depth of focus limit,” Optica 5, 1078-1085 (2018).CrossRefGoogle ScholarPubMed
[Gillespie 1991] Gillespie, D. T., Markov Processes: An Introduction for Physical Scientists, Academic Press (1991).Google Scholar
[Ginzberg 1947] Ginzberg, V. L., “Radiation of microwaves and their absorption in air,” Bulletin of the Academy of Sciences of the USSR. Physical Series 9, 165 (1947).Google Scholar
[Glaeser 1971] Glaeser, R. M., “Limitations to significant information in biological electron microscopy as a result of radiation damage,” J. Ultrastruct. Res. 36, 466-482 (1971).CrossRefGoogle ScholarPubMed
[Glaeser 2013] Glaeser, R. M., “Methods for imaging weak-phase objects in electron microscopy,” Rev. Sci. Inst. 84, 111101 (2013).CrossRefGoogle ScholarPubMed
[Glasser 1933] Glasser, O., Wilhelm Conrad Röntgen and the Early History of the Röntgen rays, Charles C. Thomas (1933).Google Scholar
[Glasstone 1977] Glasstone, S. and Dolan, P. J., The Effects of Nuclear Weapons, United States Department of Defense, and Energy Research and Development Administration, third edition (1977).CrossRefGoogle Scholar
[Gleber 2014] Gleber, S.-C., et al., “Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard x-ray regime,” Opt. Express 22, 28142-28153 (2014).CrossRefGoogle ScholarPubMed
[Glusker 2012] Glusker, J. P., “David Sayre (1924-2012),” Acta Cryst. A 68, 521-522 (2012).CrossRefGoogle Scholar
[Godard 2011] Godard, P., et al., “Three-dimensional high-resolution quantitative microscopy of extended crystals,” Nature Comm. 2, 568 (2011).CrossRefGoogle ScholarPubMed
[Godard 2012] Godard, P., et al., “Noise models for low counting rate coherent diffraction imaging,” Opt. Express 20, 25914-25934 (2012).CrossRefGoogle ScholarPubMed
[Goetz 1985] Goetz, A. F. H., et al., “Imaging spectrometry for earth remote-sensing,” Science 228, 1147-1153 (1985).CrossRefGoogle ScholarPubMed
[Golden 2001] Golden, D. C., et al., “A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001,” Am. Mineral. 86, 370-375 (2001).CrossRefGoogle Scholar
[Goldstein 1988] Goldstein, R. M., et al., “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Science 23, 713-720 (1988).CrossRefGoogle Scholar
[Goldstein 2002] Goldstein, H., et al., Classical Mechanics, Addison-Wesley, third edition (2002).
[Golosio 2003] Golosio, B., et al., “Internal elemental microanalysis combining x-ray fluorescence, Compton and transmission tomography,” J. Appl. Phys. 94, 145-156 (2003).CrossRefGoogle Scholar
[Golosio 2014] Golosio, B., et al., “Monte Carlo simulation of x-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques,” Comput. Phys. Comm. 185, 1044-1052 (2014).CrossRefGoogle Scholar
[Gölz 1992] Gölz, P., “Calculations on radiation dosages of biological materials in phase contrast and amplitude contrast x-ray microscopy,” in [Michette 1992], 313-315.
[Gonick 1993] Gonick, L. and Smith, W., The Cartoon Guide to Statistics, Harper (1993).Google Scholar
[Gonzalez-Jimenez 2012] Gonzalez-Jimenez, I. D., et al., “Hard x-ray nanotomography of catalytic solids at work,” Angew. Chem. Int. Ed. 51, 11986-11990 (2012).CrossRefGoogle ScholarPubMed
[Gonzalez 2017] Gonzalez, V., et al., “Synchrotron-based high angle resolution and high lateral resolution x-ray diffraction: revealing lead white pigment qualities in old masters paintings,” Anal. Chem. 89, 13203-13211 (2017).CrossRefGoogle ScholarPubMed
[Goodman 1984] Goodman, J. W., “Statistical properties of laser speckle patterns,” in Dainty, J. C., ed., Laser Speckle and Related Phenomena, 9-75, Springer-Verlag, second edition, (1984).Google Scholar
[Goodman 2015] Goodman, J. W., Statistical Optics, Wiley, second edition (2015).Google Scholar
[Goodman 2017] Goodman, J. W., Introduction to Fourier Optics, W.H. Freeman, fourth edition (2017).Google Scholar
[Gordon 1970] Gordon, R., et al., “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” J. Theor. Bio. 29, 471-481 (1970).CrossRefGoogle ScholarPubMed
[Gordon 1971] Gordon, R. and Herman, G. T., “Reconstruction of pictures from their projections,” Comm. ACM 14, 759-768 (1971).CrossRefGoogle Scholar
[Gordon 1982] Gordon, B. M., “Sensitivity calculations for multielemental trace analysis by synchrotron radiation induced x-ray fluorescence,” Nucl. Inst. Meth. 204, 223-229 (1982).Google Scholar
[Goto 1986] Goto, K., et al., “Determination of diffusion coefficients of self-interstitials in ice with a new method of observing climb of dislocations by x-ray topography,” Japanese J. Appl. Phys. 25, 351-357 (1986).CrossRefGoogle Scholar
[Goulding 1977] Goulding, F. S. and Jaklevic, J. M., “XRF analysis - some sensitivity comparisons between charged-particle and photon excitation,” Nucl. Inst. Meth. 142, 323-332 (1977).CrossRefGoogle Scholar
[Graafsma 2016] Graafsma, H., et al., “Integrating hybrid area detectors for storage ring and free-electron laser applications,” in [Jaeschke 2016], 1029-1054.
[Gramaccioni 2018] Gramaccioni, C., et al., “Nanoscale quantification of intracellular element concentration by x-ray fluorescence microscopy combined with x-ray phase contrast nanotomography,” Applied Physics Letters 112, 053701 (2018).CrossRefGoogle Scholar
[Grant 1972] Grant, D. G., “Tomosynthesis: a three-dimensional radiographic imaging technique,” IEEE Trans. Biomed. Eng. 19, 20-28 (1972).Google ScholarPubMed
[Green 1961] Green, M. and Cosslett, V. E., “The efficiency of production of characteristic X-radiation in thick targets of a pure element,” Proc. Phys. Soc. Lon. 78, 1206-1214 (1961).Google Scholar
[Green 1968] Green, M. and Cosslett, V. E., “Measurements of K, L and M shell x-ray production efficiencies,” J. Phys. D 1, 425-436 (1968).CrossRefGoogle Scholar
[Green 1976] Green, G. K., “Spectra and optics of synchrotron radiation,” Technical Report BNL-50522, Brookhaven National Laboratory, (1976).CrossRefGoogle Scholar
[Greinke 1992] Greinke, B. and Gölz, P., “Temperature rise of objects in x-ray microscopy - measurements and calculations,” in [Michette 1992], 316-318.
[Grejda 2005] Grejda, R., et al., “Techniques for calibrating spindles with nanometer error motion,” Precision Engineering 29, 113-123 (2005).CrossRefGoogle Scholar
[Griewank 2008] Griewank, A. and Walther, A., Evaluating Derivatives: Principles and Techniques of AlgorithmicDifferentiation, Society for Industrial and Applied Mathematics, second edition (2008).CrossRefGoogle Scholar
[Griffiths 1989] Griffiths, D. J., Introduction to Electrodynamics, Prentice-Hall, second edition (1989).Google Scholar
[Griffiths 2004] Griffiths, D. J., Introduction to Quantum Mechanics, Pearson Prentice Hall, second edition (2004).Google Scholar
[Grimm 1998] Grimm, R., et al., “Electron tomography of ice-embedded prokaryotic cells,” Biophys. J. 74, 1031-1042 (1998).CrossRefGoogle ScholarPubMed
[Grodzins 1983a] Grodzins, L., “Electron, proton, and photon induced x-ray microprobes: analytic sensitivity versus spatial resolution,” Neurotoxicology 4, 23-33 (1983).Google ScholarPubMed
[Grodzins 1983b] Grodzins, L., “Optimum energies for x-ray transmission tomography of small samples,” Nucl. Inst. Meth. 206, 541-545 (1983).Google Scholar
[Gruner 2002] Gruner, S. M., et al., “Charge-coupled device area x-ray detectors,” Rev. Sci. Inst. 73, 2815-2842 (2002).CrossRefGoogle Scholar
[Guehrs 2009] Guehrs, E., et al., “Holographic soft x-ray omni-microscopy of biological specimens,” Opt. Express 17, 6710-6720 (2009).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2004] Guizar-Sicairos, M. and Gutiérrez-Vega, J. C., “Computation of quasi-discrete Hankel transforms of integer order for propagating optical wave fields,” J. Opt. Soc. Am. A 21, 53-58 (2004).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2007] Guizar-Sicairos, M. and Fienup, J. R., “Holography with extended reference by autocorrelation linear differential operation,” Opt. Express 15, 17592-17612 (2007).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2008] Guizar-Sicairos, M. and Fienup, J., “Phase retrieval with transverse translation diversity: a nonlinear optimization approach,” Opt. Express 16, 7264-7278 (2008).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2011a] Guizar-Sicairos, M., et al., “Phase tomography from x-ray coherent diffractive imaging projections,” Opt. Express 19, 21345-21357 (2011).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2011b] Guizar-Sicairos, M., et al., “Measurement of hard x-ray lens wavefront aberrations using phase retrieval,” Appl. Phys. Lett. 98, 111108 (2011).CrossRefGoogle Scholar
[Guizar-Sicairos 2012] Guizar-Sicairos, M., et al., “Role of the illumination spatial-frequency spectrum for ptychog-raphy,” Phys. Rev. B 86, 100103 (2012).CrossRefGoogle Scholar
[Guizar-Sicairos 2014] Guizar-Sicairos, M., et al., “High-throughput ptychography using Eiger: scanning x-ray nano-imaging of extended regions,” Opt. Express 22, 14859-14870 (2014).CrossRefGoogle ScholarPubMed
[Guizar-Sicairos 2015] Guizar-Sicairos, M., et al., “Quantitative interior x-ray nanotomography by a hybrid imaging technique,” Optica 2, 259 (2015).CrossRefGoogle Scholar
[Gureyev 2004] Gureyev, T. E., et al., “Optical phase retrieval by use of first Born- and Rytov-type approximations,” App. Opt. 43, 2418-2430 (2004).Google ScholarPubMed
[Gürsoy 2014] Gürsoy, D., et al., “TomoPy: a framework for the analysis of synchrotron tomographic data,” J. Synch. Rad. 21, 1188-1193 (2014).CrossRefGoogle ScholarPubMed
[Gürsoy 2017a] Gürsoy, D., “Direct coupling of tomography and ptychography,” Opt. Lett. 42, 3169-3172 (2017).CrossRefGoogle ScholarPubMed
[Gürsoy 2017b] Gürsoy, D., et al., “Rapid alignment of nan-otomography data using joint iterative reconstruction and reprojection,” Sci. Rep. 7, 11818 (2017).CrossRefGoogle ScholarPubMed
[Gustafsson 2000] Gustafsson, M. G., “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).CrossRefGoogle ScholarPubMed
[Gustafsson 2005] Gustafsson, M., “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Nat. Acad. Sci. 102, 13081-13086 (2005).CrossRefGoogle ScholarPubMed
[Guttmann 2011] Guttmann, P., et al., “Nanoscale spectroscopy with polarized x-rays by NEXAFS-TXM,” Nature Photonics 6, 25-29 (2011).Google Scholar
[Ha 2011] Ha, J., et al., “Effect of polymers on the nanos-tructure and on the carbonation of calcium silicate hydrates: a scanning transmission x-ray microscopy study,” J. Mater. Sci. 47, 976-989 (2011).Google Scholar
[Haas 1968] Haas, D. J., “X-ray studies on lysozyme crystals at -50?C,” Acta Cryst. B 24, 604 (1968).CrossRefGoogle Scholar
[Haas 1970] Haas, D. J. and Rossmann, M. G., “Crystallographic studies on lactate dehydrogenase at -75?C,” Acta Cryst. B 26, 998-1004 (1970).CrossRefGoogle Scholar
[Hacke 1993] Hacke, M., et al., “Radiation damage of Mylar foils by a nuclear microprobe,” Zeitschrift für Physik A 346, 309-318 (1993).CrossRefGoogle Scholar
[Haddad 1994] Haddad, W. S., et al., “Ultra high resolution x-ray tomography,” Science 266, 1213-1215 (1994).CrossRefGoogle Scholar
[Haelbich 1979] Haelbich, R.-P., et al., “Smooth multilayer films suitable for x-ray mirrors,” Appl. Phys. Lett. 34, 184-186 (1979).CrossRefGoogle Scholar
[Haelbich 1980] Haelbich, R.-P., et al., “A scanning ultrasoft x-ray microscope with large aperture reflection optics for use with synchtrotron radiation,” Ann. NY Acad. Sci. 342, 148-157 (1980).CrossRefGoogle Scholar
[Hajima 2016] Hajima, R., “Status and perspectives of Compton sources,” Physics Procedia 84, 35-39 (2016).CrossRefGoogle Scholar
[Halbach 1981] Halbach, K., et al., “A permanent magnet undulator for SPEAR,” IEEE Trans. Nucl. Sci. 28, 3136-3138 (1981).CrossRefGoogle Scholar
[Hall 1972] Hall, T., et al., X-Ray Microscopy in Clinical and Experimental Medicine, C. C. Thomas (1972).Google Scholar
[Han 2016] Han, M. C., et al., “Validation of cross sections for Monte Carlo simulation of the photoelectric effect,” IEEE Trans. Nucl. Sci. 63, 1117-1146 (2016).CrossRefGoogle Scholar
[Handa 1988] Handa, Y. P. and Klug, D. D., “Heat capacity and glass transition behavior of amorphous ice,” J. Phys. Chem. 92, 3323-3325 (1988).CrossRefGoogle Scholar
[Hantke 2014] Hantke, M. F., et al., “High-throughput imaging of heterogeneous cell organelles with an x-ray laser,” Nature Photonics 8, 943-949 (2014).CrossRefGoogle Scholar
[Harder 2007] Harder, R., et al., “Orientation variation of surface strain,” Phys. Rev. B 76, 115425 (2007).CrossRefGoogle Scholar
[Harris 1978] Harris, F. J., “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proceedings of the IEEE 66, 51-83 (1978).CrossRefGoogle Scholar
[Harrison 2011] Harrison, W., Solid State Theory, Dover (2011).
[Hart 1970a] Hart, E. J. and Anbar, M., The Hydrated Electron, Wiley-Interscience (1970).
[Hart 1970b] Hart, M. and Bonse, U., “Interferometry with X rays,” Physics Today 23, 26-31 (1970).CrossRefGoogle Scholar
[Hart 1975] Hart, M., “Review lecture: ten years of x-ray interferometry,” Proc. Roy. Soc. Lon. A 346, 1-22 (1975).CrossRefGoogle Scholar
[Hartman 1988] Hartman, P. L., “Early experimental work on synchrotron radiation,” Synch. Rad. News 1, (5), 28-30 (1988).Google Scholar
[Harvey 1984] Harvey, J. E. and Forgham, J. L., “The spot of Arago: new relevance for an old phenomenon,” Am. J. Phys. 52, 243-247 (1984).CrossRefGoogle Scholar
[Hasegawa 1994] Hasegawa, M., et al., “Fabrication of Wolter-type x-ray focusing mirror using epoxy resin,” Rev. Sci. Inst. 65, 2568-2573 (1994).CrossRefGoogle Scholar
[Hasenkamp 1974] Hasenkamp, F. A., “Radiographic laminography,” Materials Evaluation 32, 169 (1974).Google Scholar
[Hastings 1977] Hastings, J. B., “X-ray optics and monochromators for synchrotron radiation,” J. Appl. Phys. 48, 1576-1584 (1977).CrossRefGoogle Scholar
[Hau-Riege 2004] Hau-Riege, S. P., et al., “Dynamics of biological molecules irradiated by short x-ray pulses,” Phys. Rev. E 69, 051906 (2004).CrossRefGoogle ScholarPubMed
[Hau-Riege 2007] Hau-Riege, S. P., et al., “Encapsulation and diffraction-pattern-correction methods to reduce the effect of damage in x-ray diffraction imaging of single biological molecules,” Phys. Rev. Lett. 98, 198302 (2007).CrossRefGoogle ScholarPubMed
[Hau-Riege 2010] Hau-Riege, S. P., et al., “Sacrificial tamper slows down sample explosion in FLASH diffraction experiments,” Phys. Rev. Lett. 104, 064801 (2010).CrossRefGoogle ScholarPubMed
[Hau-Riege 2011] Hau-Riege, S. P., High-Intensity X Rays - Interaction with Matter, Wiley (2011).CrossRefGoogle Scholar
[Hawkes 2007] Hawkes, P. and Spence, J., Science of Microscopy, Springer (2007).CrossRefGoogle Scholar
[Hawkes 2009] Hawkes, P. W., “Aberration correction past and present,” Phil. Trans. Roy. Soc. Lon. A 367, 3637-3664 (2009).Google ScholarPubMed
[Hawkes 2015] Hawkes, P. W., “The correction of electron lens aberrations,” Ultramicroscopy 156, A1- A64 (2015).CrossRefGoogle ScholarPubMed
[Hawryluk 1988] Hawryluk, A. M. and Seppala, L. G., “Soft-x-ray projection lithography using an x-ray reduction camera,” J. Vac. Sci. Tech. B 6, 2162-2166 (1988).CrossRefGoogle Scholar
[Hayashi 2000] Hayashi, H., et al., “The complete optical spectrum of liquid water measured by inelastic x-ray scattering,” Proc. Nat. Acad. Sci. 97, 6264-6266 (2000).CrossRefGoogle ScholarPubMed
[Hecht 2002] Hecht, E., Optics, AddisonWesley, fourth edition (2002).Google Scholar
[Hegerl 1970] Hegerl, R. and Hoppe, W., “Dynamische The-orie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld,” Berichte der Bunsengesellschaft für physikalische Chemie 74, 1148-1154 (1970).CrossRefGoogle Scholar
[Hegerl 1976] Hegerl, R. and Hoppe, W., “Influence of electron noise on three-dimensional image reconstruction,” Zeitschrift für Naturforschung 31 a, 1717-1721 (1976).Google Scholar
[Heide 1974] Heide, H. G. and Grund, S., “Eine Tiefkühlkette zum überführen von wasserhaltigen biolo-gischen Objekten ins Elektronenmikroskop,” J. Ultra-struct. Res. 48, 259-268 (1974).CrossRefGoogle Scholar
[Heim 2009] Heim, S., et al., “Energy-tunable full-field x-ray microscopy: cryo-tomography and nano-spectroscopy with the new BESSY TXM,” J. Phys. Conf. Ser. 186, 012041 (2009).CrossRefGoogle Scholar
[Heisenberg 1927] Heisenberg, W., “Über den an-schaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik 43, 172-198 (1927).CrossRefGoogle Scholar
[Heitler 1954] Heitler, W., The Quantum Theory of Radiation, Dover (1954).Google Scholar
[Helfen 2005] Helfen, L., et al., “High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography,” Appl. Phys. Lett. 86, 071915 (2005).CrossRefGoogle Scholar
[Hell 1994] Hell, S. W. and Wichmann, J., “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780-782 (1994).CrossRefGoogle ScholarPubMed
[Hell 2007] Hell, S. W., “Far-field optical nanoscopy,” Science 316, 1153-1158 (2007).CrossRefGoogle ScholarPubMed
[Hemberg 2003] Hemberg, O., et al., “Liquid-metal-jet anode electron-impact x-ray source,” Appl. Phys. Lett. 83, 1483-1485 (2003).CrossRefGoogle Scholar
[Hempelmann 1949] Hempelmann, L. H., “Potential dangers in the uncontrolled use of shoe-fitting fluoroscopes,” The New England Journal of Medicine 241, 335-336 (1949).CrossRefGoogle ScholarPubMed
[Henderson 1975] Henderson, R. and Unwin, P. N. T., “Three-dimensional model of purple membrane obtained by electron microscopy,” Nature 257, 28-32 (1975).CrossRefGoogle ScholarPubMed
[Henderson 1990] Henderson, R., “Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction,” Proc. Roy. Soc. Lon. B 241, 6-8 (1990).Google Scholar
[Henderson 1992] Henderson, R., “Image contrast in high-resolution electron microscopy of biological macromolecules: TMV in ice,” Ultramicroscopy 46, 1-18 (1992).CrossRefGoogle ScholarPubMed
[Henderson 1995] Henderson, R., “The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules,” Q. Rev. Biophys. 28, 171-193 (1995).CrossRefGoogle ScholarPubMed
[Hendricks 1972] Hendricks, R. W., “The gas amplification factor in xenon filled proportional counters,” Nucl. Inst. Meth. 102, 309-312 (1972).CrossRefGoogle Scholar
[Henke 1957] Henke, B. L., et al., “Semiempirical determination of mass absorption coefficients for the 5 to 50 Angstrom x-ray region,” J. Appl. Phys. 28, 98-105 (1957).CrossRefGoogle Scholar
[Henke 1966] Henke, B. L., “Application of multilayer analyzers to 15-150 Å fluorescence spectroscopy for chemical and valence band analysis,” in [Mallett 1966], 430-440.CrossRef
[Henke 1972] Henke, B. L., “Ultrasoft-x-ray reflection, refraction, and production of photoelectrons (100-1000-eV region),” Phys. Rev. A 6, 94-104 (1972).CrossRefGoogle Scholar
[Henke 1981] Henke, B. L., “Low energy x-ray interactions: photoionization, scattering, specular and Bragg reflection,” in Attwood, D. T. and Henke, B. L., eds., Low Energy X-ray Diagnostics, American Institute of Physics, 146-155 (1981).Google Scholar
[Henke 1982] Henke, B. L., et al., “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection,” Atom. Dat. Nucl. Dat. Tab. 27, 1-144 (1982).Google Scholar
[Henke 1993] Henke, B. L., et al., “X-ray interactions: Pho-toabsorption, scattering, transmission, and reflection at E=50-30,000 eV, Z=1-92,” Atom. Dat. Nucl. Dat. Tab. 54, 181-342 (1993).Google Scholar
[Henrich 2011] Henrich, B., et al., “The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL,” Nucl. Inst. Meth. Phys. Res. A 633, S11- S14 (2011).CrossRefGoogle Scholar
[Herman 1979] Herman, G. T., “Correction for beam hardening in computed tomography,” Phys. Med. Bio. 24, 81-106 (1979).CrossRefGoogle ScholarPubMed
[Herman 1980] Herman, G. T., Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, Academic Press, second edition (1980).Google Scholar
[Herrmann 2013] Herrmann, S., et al., “CSPAD-140k: A versatile detector for LCLS experiments,” Nucl. Inst. Meth. Phys. Res. A 718, 550-553 (2013).CrossRefGoogle Scholar
[Hertz 1999] Hertz, H. M., et al., “Normal-incidence condenser mirror arrangement for compact water-window x-ray microscopy,” Proc. SPIE 3766, 247-251 (1999).Google Scholar
[Hess 2006] Hess, S. T., et al., “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258-4272 (2006).CrossRefGoogle ScholarPubMed
[Heuser 1979] Heuser, J., et al., “Synaptic vesicle exocyto-sis captured by quick freezing and correlated with quantal transmitter release,” J. Cell Bio. 81, 275-300 (1979).CrossRefGoogle ScholarPubMed
[Heuser 1981] Heuser, J. and Reese, T., “Structural changes after transmitter release at the frog neuromuscular junction,” J. Cell Bio. 88, 564-580 (1981).CrossRefGoogle ScholarPubMed
[Heyl 2017] Heyl, C. M., et al., “Introduction to macroscopic power scaling principles for high-order harmonic generation,” J. Phys. B 50, 013001 (2017).CrossRefGoogle Scholar
[Higashi 1989] Higashi, Y., et al., “New machining method for making precise and very smooth mirror surfaces made from Cu and Al alloys for synchrotron radiation optics,” Rev. Sci. Inst. 60, 2120-2123 (1989).CrossRefGoogle Scholar
[Hignette 2001] Hignette, O., et al., “Submicron focusing of hard x rays with reflecting surfaces at the ESRF,” Proc. SPIE 4499, 105-116 (2001).Google Scholar
[Hignette 2005] Hignette, O., et al., “Efficient sub 100 nm focusing of hard x rays,” Rev. Sci. Inst. 76, 063709 (2005).CrossRefGoogle Scholar
[Hill 2018] Hill, M. O., et al., “Measuring three-dimensional strain and structural defects in a single InGaAs nanowire using coherent x-ray multiangle Bragg projection pty-chography,” Nano Lett. 18, 811-819 (2018).CrossRefGoogle Scholar
[Hirose 2017] Hirose, M., et al., “Use of Kramers-Kronig relation in phase retrieval calculation in x-ray spectro-ptychography,” Opt. Express 25, 8593-8603 (2017).CrossRefGoogle ScholarPubMed
[Hitchcock 1980] Hitchcock, A. P. and Brion, C. E., “K-shell excitation spectra of CO, N2, and O2,” J. Electron Spect. Rel. Phenom. 18, 1-21 (1980).CrossRefGoogle Scholar
[Hitchcock 1994] Hitchcock, A. and Mancini, D., “Bibliography of atomic and molecular inner-shell excitation studies,” J. Electron Spect. Rel. Phenom. 67, 1-132 (1994).Google Scholar
[Hitchcock 2003] Hitchcock, A. P., et al., “3d chemical mapping of toners by serial section scanning transmission x-ray microscopy,” Journal de Physique IV 104, 509-512 (2003).CrossRefGoogle Scholar
[Hitchcock 2009] Hitchcock, A. P., et al., “Soft x-ray spectromicroscopy of nickel sorption in a natural river biofilm,” Geobiology 7, 432-453 (2009).CrossRefGoogle Scholar
[Hitchcock 2012] Hitchcock, A. P., et al., “Advances in the detection of As in environmental samples using low energy x-ray fluorescence in a scanning transmission x-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria,” Env. Sci. Tech. 26, 2821-2829 (2012).Google Scholar
[Hobbs 1978] Hobbs, L. W., “Radiation damage in electron microscopy of inorganic solids,” Ultramicroscopy 3, 381-386 (1978).CrossRefGoogle Scholar
[Hodoroaba 2011] Hodoroaba, V. D., et al., “X-ray scattering in x-ray fluorescence spectra with x-ray monochromatic, polarised excitation - modelling, experiment, and Monte-Carlo simulation,” Nucl. Inst. Meth. Phys. Res. B 269, 1493-1498 (2011).CrossRefGoogle Scholar
[Hofmann 1978] Hofmann, A., “Quasi-monochromatic synchrotron radiation from undulators,” Nucl. Inst. Meth. 152, 17-21 (1978).CrossRefGoogle Scholar
[Hogan 1991] Hogan, J. P., et al., “Fluorescent computer-tomography: a model for correction of x-ray absorption,” IEEE Trans. Nucl. Sci. 38, 1721-1727 (1991).CrossRefGoogle Scholar
[Holler 2012] Holler, M., et al., “An instrument for 3D x-ray nano-imaging,” Rev. Sci. Inst. 83, 073703 (2012).CrossRefGoogle ScholarPubMed
[Holler 2014] Holler, M., et al., “X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution,” Sci. Rep. 4, 3857 (2014).CrossRefGoogle ScholarPubMed
[Holler 2017] Holler, M., et al., “High-resolution nondestructive three-dimensional imaging of integrated circuits,” Nature 543, 402-406 (2017).CrossRefGoogle Scholar
[Holmes 1998] Holmes, K. and Rosenbaum, G., “How x-ray diffraction with synchrotron radiation got started,” J. Synch. Rad. 5, 147-153 (1998).CrossRefGoogle ScholarPubMed
[Holt 2013] Holt, M., et al., “Nanoscale hard x-ray microscopy methods for materials studies,” Ann. Rev. Mater. Res. 43, 183-211 (2013).CrossRefGoogle Scholar
[Holt 2014] Holt, M., et al., “Strain imaging of nanoscale semiconductor heterostructures with x-ray bragg projection ptychography,” Phys. Rev. Lett. 112, 165502 (2014).CrossRefGoogle ScholarPubMed
[Holz 2000] Holz, M., et al., “Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements,” Phys. Chem. Chem. Phys. 2, 4740-4742 (2000).CrossRefGoogle Scholar
[Holzner 2010] Holzner, C., et al., “Zernike phase contrast in scanning microscopy with x-rays,” Nature Phys. 6, 883-887 (2010).CrossRefGoogle ScholarPubMed
[Hong 2014] Hong, Y. P., et al., “Alignment of low-dose x-ray fluorescence tomography images using differential phase contrast,” J. Synch. Rad. 21, 229-234 (2014).CrossRefGoogle ScholarPubMed
[Hong 2017] Hong, Y. P. “Improvements in x-ray fluorescence tomography,” PhD thesis, Northwestern University, (2017).Google Scholar
[Honkanen 2014] Honkanen, A. P., et al., “Improving the energy resolution of bent crystal x-ray spectrometers with position-sensitive detectors,” J. Synch. Rad. 21, 762-767 (2014).CrossRefGoogle ScholarPubMed
[Hoover 1992] Hoover, R. B., “Water window imaging x-ray microscope,” US Patent Office patent 5,107,526 (filed 1990, granted 1992).CrossRef
[Hoover 1993] Hoover, R. B., et al., “Imaging Schwarzschild multilayer x-ray microscope,” Proc. SPIE 1742, 660-673 (1993).Google Scholar
[Hoover 1994] Hoover, R. B., et al., “Development of the water window imaging x-ray microscope,” Proc. SPIE 2270, 195-208 (1994).Google Scholar
[Hopf 1976] Hopf, F. A., et al., “Classical theory of a free-electron laser,” Optics Comm. 18, 413-416 (1976).CrossRefGoogle Scholar
[Hopkins 1950] Hopkins, H. H. and Barham, P. M., “The influence of the condenser on microscopic resolution,” Proc. Phys. Soc. Lon.¡ B 63, 737-744 (1950).Google Scholar
[Hopkins 1951] Hopkins, H. H., “The concept of partial coherence in optics,” Proc. Roy. Soc. Lon. A 208, 263-277 (1951).Google Scholar
[Hopkins 1957] Hopkins, H. H., “Applications of coherence theory in microscopy and interferometry,” J. Opt. Soc. Am. 47, 508-526 (1957).CrossRefGoogle Scholar
[Hopkins 2002] Hopkins, A. L. and Groom, C. R., “The druggable genome,” Nature Reviews Drug Discovery 1, 727-730 (2002).CrossRefGoogle ScholarPubMed
[Hoppe 1969a] Hoppe, W., “Beugung im Inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung,” Acta Cryst. A 25, 495-501 (1969).CrossRefGoogle Scholar
[Hoppe 1969b] Hoppe, W., “Beugung im inhomogenen Pri-marstrahlwellenfeld. III. Amplituden-und Phasenbestim-mung bei unperiodischen Objekten,” Acta Cryst. A 25, 508-514 (1969).CrossRefGoogle Scholar
[Hoppe 1969c] Hoppe, W. and Strube, G., “Beugung in inhomogenen Primarstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinter-ferenzen,” Acta Cryst. A 25, 502-507 (1969).CrossRefGoogle Scholar
[Hoppe 1981] Hoppe, W. and Hegerl, R., “Some remarks concerning the influence of electron noise on 3D reconstruction,” Ultramicroscopy 6, 205-206 (1981).CrossRefGoogle Scholar
[Horikawa 1993] Horikawa, Y., et al., “A compact Schwarzschild soft x-ray microscope with a laser-produced plasma source,” J. Microsc. 172, 189-194 (1993).CrossRefGoogle Scholar
[Hornberger 2006] Hornberger, B., et al., “Combined fluorescence and phase contrast imaging at the Advanced Photon Source,” in [Aoki 2006], 396-398.Google Scholar
[Hornberger 2007a] Hornberger, B. “Phase contrast microscopy with soft and hard x-rays using a segmented detector,” PhD thesis, Department of Physics and Astronomy, Stony Brook University, (2007).Google Scholar
[Hornberger 2007b] Hornberger, B., et al., “Quantitative amplitude and phase contrast imaging in a scanning transmission X-ray microscope,” Ultramicroscopy 107, 644-655 (2007).CrossRefGoogle Scholar
[Hornberger 2008] Hornberger, B., et al., “Differential phase contrast with a segmented detector in a scanning x-ray mi-croprobe,” J. Synch. Rad. 15, 355-362 (2008).CrossRefGoogle Scholar
[Horowitz 1972] Horowitz, P. and Howell, J. A., “A scanning x-ray microscope using synchrotron radiation,” Science 178, 608-611 (1972).CrossRefGoogle ScholarPubMed
[Horowitz 1978] Horowitz, P., “Some experiences with x-ray and proton microscopes,” Ann. NY Acad. Sci. 306, 203-222 (1978).CrossRefGoogle Scholar
[Horowitz 2015] Horowitz, P., “Adventures with synchrotron radiation at Harvard,” Synch. Rad. News 28, (4), 10-12 (2015).CrossRefGoogle Scholar
[Hounsfield 1973] Hounsfield, G. N., “Computerized transverse axial scanning (tomography): Part 1. Description of system,” British J. Radiology 46, 1016-1022 (1973).CrossRefGoogle Scholar
[Howell 1975] Howell, J. A. and Horowitz, P., “Ellipsoidal and bent cylindrical condensing mirrors for synchrotron radiation,” Nucl. Inst. Meth. 125, 225-230 (1975).CrossRefGoogle Scholar
[Howells 1987] Howells, M., et al., “X-ray holograms at improved resolution: a study of zymogen granules,” Science 238, 514-517 (1987).CrossRefGoogle ScholarPubMed
[Howells 1994] Howells, M. R., et al., “Possibility for one-shot tomography using a high-gain free-electron laser,” in Arthur, J., et al., eds., Proceedings of the Workshop on Scientific Applications of Coherent X-rays, number NTIS CONF-940250, National Technical Information Service (1994).Google Scholar
[Howells 2000] Howells, M. R., et al., “Theory and practice of elliptically bent x-ray mirrors,” Opt. Eng. 39, 2748-2762 (2000).CrossRefGoogle Scholar
[Howells 2007] Howells, M., et al., “Principles and applications of zone plate x-ray microscopes,” In Science of Microscopy [Hawkes 2007], 835-926.Google Scholar
[Howells 2009] Howells, M. R., et al., “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J. Electron Spect. Rel. Phenom. 170, 4-12 (2009).CrossRefGoogle ScholarPubMed
[Howie 1980] Howie, A., “Radiation damage problems in electron microscopy,” Revue de Physique Appliquée 15, 291-295 (1980).CrossRefGoogle Scholar
[Hruszkewycz 2017] Hruszkewycz, S. O., et al., “High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography,” Nature Mater. 16, 244-251 (2017).CrossRefGoogle ScholarPubMed
[Huang 2009a] Huang, X., et al., “Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy,” Opt. Express 17, 13541-13553 (2009).CrossRefGoogle ScholarPubMed
[Huang 2009b] Huang, X., et al., “Soft x-ray diffraction microscopy of a frozen hydrated yeast cell,” Phys. Rev. Lett. 103, 198101 (2009).CrossRefGoogle ScholarPubMed
[Huang 2010a] Huang, R., et al., “Phase-space analysis and experimental results for secondary focusing at x-ray beamlines,” J. Synch. Rad. 17, 644-652 (2010).CrossRefGoogle ScholarPubMed
[Huang 2010b] Huang, X., et al., “Incorrect support and missing center tolerances of phasing algorithms,” Opt. Express 18, 26441-26449 (2010).CrossRefGoogle ScholarPubMed
[Huang 2010c] Huang, Z. P., et al., “Metal-assisted electrochemical etching of silicon,” Nanotechnology 21, 465301 (2010).CrossRefGoogle ScholarPubMed
[Huang 2011] Huang, X., et al., “Anti-contamination device for cryogenic soft x-ray diffraction microscopy,” Nucl. Inst. Meth. Phys. Res. A 638, 171-175 (2011).CrossRefGoogle ScholarPubMed
[Huang 2013] Huang, X., et al., “11 nm hard x-ray focus from a large-aperture multilayer Laue lens,” Sci. Rep. 3, 3562 (2013).CrossRefGoogle ScholarPubMed
[Huang 2014] Huang, X., et al., “Optimization of overlap uniformness for ptychography,” Opt. Express 22, 12634-12644 (2014).Google ScholarPubMed
[Huang 2015] Huang, X., et al., “Fly-scan ptychography,” Sci. Rep. 5, 9074 (2015).CrossRefGoogle ScholarPubMed
[Huang 2016] Huang, Q., et al., “Reduction of lattice disorder in protein crystals by high-pressure cryocooling,” J. Appl. Cryst. 49, 149-157 (2016).CrossRefGoogle ScholarPubMed
[Huang 2017a] Huang, X., et al., “Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses,” Opt. Express 25, 8698-8704 (2017).Google ScholarPubMed
[Huang 2017b] Huang, X., et al., “Artifact mitigation of pty-chography integrated with on-the-fly scanning probe microscopy,” Appl. Phys. Lett. 111, 023103 (2017).CrossRefGoogle Scholar
[Hubbell 1980] Hubbell, J. H., et al., “Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV-100 GeV photons in elements Z=1-100,” J. Phys. Chem. Ref. Data 9, 1023-1147 (1980).CrossRefGoogle Scholar
[Hubbell 1982] Hubbell, J. H., “Photon mass attenuation and energy-absorption coefficients from 1 keV to 20 MeV,” Int. J. App. Radiat. Isot. 33, 1269-1290 (1982).Google Scholar
[Hubbell 1994] Hubbell, J. H., et al., “A review, bibliography, and tabulation of K, L, and higher atomic shell x-ray fluorescence yields,” J. Phys. Chem. Ref. Data 23, 339 (1994).CrossRefGoogle Scholar
[Huldt 2003] Huldt, G., et al., “Diffraction imaging of single particles and biomolecules,” J. Struct. Bio. 144, 219-227 (2003).CrossRefGoogle ScholarPubMed
[Hund 1925a] Hund, F., “Atomtheoretische Deutung des Magnetismus der seltenen. Erden.,” Zeitschrift für Physik A 33, 855-859 (1925).Google Scholar
[Hund 1925b] Hund, F., “Zur Deutung verwickelter Spek-tren, insbesondere der Elemente Scandium bis Nickel,” Zeitschrift für Physik A 33, 345-371 (1925).Google Scholar
[Hunt 1991a] Hunt, B. J., The Maxwellians, Cornell University Press (1991).Google Scholar
[Hunt 1991b] Hunt, J. A. and Williams, D. B., “Electron energy-loss spectrum-imaging,” Ultramicroscopy 38, 47-73 (1991).CrossRefGoogle Scholar
[Huxley 1997] Huxley, H. E. and Holmes, K. C., “Development of synchrotron radiation as a high-intensity source for x-ray diffraction,” J. Synch. Rad. 4, 366-379 (1997).CrossRefGoogle ScholarPubMed
[Iancu 2006] Iancu, C. V., et al., “A comparison of liquid nitrogen and liquid helium as cryogens for electron cry-otomography,” J. Struct. Bio. 153, 231-240 (2006).CrossRefGoogle Scholar
[Ice 2011] Ice, G. E., et al., “The race to x-ray microbeam and nanobeam science,” Science 334, 1234-1239 (2011).CrossRefGoogle ScholarPubMed
[Ihle 2017] Ihle, S., et al., “Direct measurement of the position accuracy for low energy x-ray photons with a pnCCD,” J. Instrumentation 12, P02005 (2017).CrossRefGoogle Scholar
[Ingall 2013] Ingall, E. D., et al., “Role of biogenic silica in the removal of iron from the Antarctic seas,” Nature Comm. 4, 1981 (2013).CrossRefGoogle ScholarPubMed
[Inoue 2012] Inoue, I., et al., “Effect of shot noise on x-ray speckle visibility spectroscopy,” Opt. Express 20, 26878-26887 (2012).CrossRefGoogle ScholarPubMed
[Irwin 1995] Irwin, K. D., “An application of electrothermal feedback for high resolution cryogenic particle detection,” Appl. Phys. Lett. 66, 1998-2000 (1995).CrossRefGoogle Scholar
[Irwin 1996] Irwin, K. D., et al., “X-ray detection using a superconducting transition-edge sensor microcalorime-ter with electrothermal feedback,” Appl. Phys. Lett. 69, 1945-1947 (1996).CrossRefGoogle Scholar
[Irwin 2004] Irwin, K. D. and Lehnert, K. W., “Microwave SQUID multiplexer,” Appl. Phys. Lett. 85, 2107-2109 (2004).CrossRefGoogle Scholar
[Isaacson 1973] Isaacson, M., et al., “Electron beam excitation and damage of biological molecules: its implications for specimen damage in electron microscopy,” Ra-diat. Res. 55, 205-224 (1973).Google ScholarPubMed
[Isaacson 1975] Isaacson, M., “Inelastic scattering and beam damage of biological molecules,” in Siegel, B. M. and Beaman, D. R., eds., Physical Aspects of Electron Microscopy and Microbeam Analysis, Wiley, 247-258 (1975).Google Scholar
[Isaacson 1978] Isaacson, M. and Utlaut, M., “A comparison of electron and photon beams for determining micro-chemical environment,” Optik 50, 213-234 (1978).Google Scholar
[Ishikawa 2012] Ishikawa, T., et al., “A compact X-ray free-electron laser emitting in the sub-ångström region,” Nature Photonics 6, 540-544 (2012).CrossRefGoogle Scholar
[Ishizuka 1977] Ishizuka, K. and Uyeda, N., “A new theoretical and practical approach to the multislice method,” Acta Cryst. A 33, 740-749 (1977).CrossRefGoogle Scholar
[Ito 1983] Ito, H., et al., “Isolation and identification of radiation-resistant cocci belonging to the genus Deinococ-cus from sewage sludges and animal feeds,” Agricultural and Biological Chemistry 47, 1239-1247 (1983).Google Scholar
[Iwamoto 2008] Iwamoto, H., A Slow Death: 83 Days of Radiation Sickness, Vertical (2008).Google Scholar
[Iwanenko 1944] Iwanenko, D. and Pomeranchuk, I., “On the maximal energy attainable in a betatron,” Phys. Rev. 65, 343 (1944).CrossRefGoogle Scholar
[Jackson 1962] Jackson, J. D., Classical Electrodynamics, Wiley, first edition (1962).Google Scholar
[Jackson 1981] Jackson, D. F. and Hawkes, D. J., “X-ray attenuation coefficients of elements and mixtures,” Phys. Rep. 70, 169-233 (1981).CrossRefGoogle Scholar
[Jackson 1999] Jackson, J. D., Classical Electrodynamics, Wiley, third edition (1999).Google Scholar
[Jacobsen 1990a] Jacobsen, C., “X-ray holography: a history,” in Shinohara, K., et al., eds., X-ray Microscopy in Biology and Medicine, Springer-Verlag, 167-177 (1990).Google Scholar
[Jacobsen 1990b] Jacobsen, C., et al., “X-ray holographic microscopy using photoresists,” J. Opt. Soc. Am. A 7, 1847-1861 (1990).CrossRefGoogle Scholar
[Jacobsen 1991] Jacobsen, C., et al., “Diffraction-limited imaging in a scanning transmission x-ray microscope,” Optics Comm. 86, 351-364 (1991).CrossRefGoogle Scholar
[Jacobsen 1992a] Jacobsen, C., “Making soft x-ray microscopy harder: considerations for sub-0.1 µm resolution imaging at ~4 Å wavelengths,” in [Michette 1992], 274-277.Google Scholar
[Jacobsen 1992b] Jacobsen, C., et al., “Resolution in soft x-ray microscopes,” Ultramicroscopy 47, 55-79 (1992).CrossRefGoogle Scholar
[Jacobsen 1992c] Jacobsen, C. and Lindaas, S., “Experiments in zone plate replication using spatial frequency multiplication at x-ray wavelengths,” in [Michette 1992], 101-103.Google Scholar
[Jacobsen 1993] Jacobsen, C., et al., “Scanning luminescence x-ray microscopy: imaging fluorescence dyes at suboptical resolution,” J. Microsc. 172, 121-129 (1993).CrossRefGoogle Scholar
[Jacobsen 2000] Jacobsen, C., et al., “Soft x-ray spectroscopy from image sequences with sub-100 nm spatial resolution,” J. Microsc. 197, 173-184 (2000).CrossRefGoogle ScholarPubMed
[Jacobsen 2004] Jacobsen, C., et al., “Calculation of x-ray refraction from near-edge absorption data only,” Proc. SPIE 5538, 23-30 (2004).Google Scholar
[Jacobsen 2016a] Jacobsen, C., “Future challenges for x-ray microscopy,” AIP Conf. Proc. 1696, 020035 (2016).CrossRefGoogle Scholar
[Jacobsen 2016b] Jacobsen, C. and Borland, M., “X-ray brightness and coherence, and diffraction-limited storage rings,” in Bertolucci, S. and Palumbo, L., eds., Future Research Infrastructure Challenges and Opportunities, 35-51, Societá Italiana di Fisica, (2016).Google Scholar
[Jacobsen 2017] Jacobsen, C., et al., “Strategies for high-throughput focused-beam ptychography,” J. Synch. Rad. 24, 1078-1081 (2017).CrossRefGoogle ScholarPubMed
[Jacobsen 2018] Jacobsen, C., “Relaxation of the Crowther criterion in multislice tomography,” Opt. Lett. 43, 4811-4814 (2018).CrossRefGoogle ScholarPubMed
[Jaeschke 2016] Jaeschke, E. J., et al., eds., Synchrotron Light Sources and Free-Electron Lasers, Springer (2016).Google Scholar
[Jahn 2017] Jahn, T., et al., “How many photons are needed to reconstruct random objects in coherent x-ray diffractive imaging?,” Acta Cryst. A 73, 19-29 (2017).CrossRefGoogle ScholarPubMed
[Jain 2008] Jain, A. and Goodson, K. E., “Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3? method,” J. Heat Transf. 130, 102402 (2008).CrossRefGoogle Scholar
[Jaje 2017] Jaje, K., “Advanced photon source safety assessment document,” APS-3.1.2.1.0 Rev. 5, Argonne National Laboratory, (2017).Google Scholar
[James 1982] James, R. W., The Optical Principles of the Diffraction of X-rays, Ox Bow Press (1982) Originally published as The Crystalline State, Vol. II, ed. L., Bragg (1948).
[James 2013] James, S. A., et al., “Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages,” ACS Nano 7, 10621-10635 (2013).CrossRefGoogle ScholarPubMed
[James 2015] James, S. A., et al., “Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans,” Chem. Sci. 6, 2952-2962 (2015).CrossRefGoogle ScholarPubMed
[Janesick 2001] Janesick, J. R., Scientific Charge-Coupled Devices, SPIE (2001).CrossRefGoogle Scholar
[Janssens 2000a] Janssens, K., “Comparison with other mi-croanalytical techniques,” in [Janssens 2000d], 211-246.Google ScholarPubMed
[Janssens 2000b] Janssens, K., et al., “Evaluation and calibration of µ-XRF data,” in [Janssens 2000d], 155-210.Google Scholar
[Janssens 2000c] Janssens, K., et al., “Use of microscopic XRF for non-destructive analysis in art and archaeome-try,” X-ray Spect. 29, 73-91 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
[Janssens 2000d] Janssens, K. H. A., et al., eds., Microscopic X-ray Fluorescence Analysis, Wiley (2000).Google Scholar
[Jaskolski 2014] Jaskolski, M., et al., “A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits,” FEBS J. 281, 3985-4009 (2014).CrossRefGoogle ScholarPubMed
[Jeanguillaume 1989] Jeanguillaume, C. and Colliex, C., “Spectrum-image: the next step in EELS digital acquisition and processing,” Ultramicroscopy 28, 252-257 (1989).CrossRefGoogle Scholar
[Jefimovs 2007] Jefimovs, K., et al., “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99, 264801 (2007).CrossRefGoogle ScholarPubMed
[Jenkins 1976] Jenkins, F. A. and White, H. E., Fundamentals of Optics, McGraw-Hill, fourth edition (1976).Google Scholar
[Jenkins 1991] Jenkins, R., et al., “Nomenclature, symbols, units and their usage in spectrochemical analysis - VIII. Nomenclature system for x-ray spectroscopy (recommendations 1991),” Pure Appl. Chem. 63, 735-746 (1991).CrossRefGoogle Scholar
[Jensen 1985] Jensen, L. H., “Overview of refinement in macromolecular structure analysis,” Meth. Enzymology 115, 227-234 (1985).Google ScholarPubMed
[Jentzsch 1929] Jentzsch, F., “Optische Versuche mit Rönt-genstrahlen,” Physikalische Zeitschrift 30, 268-273 (1929).Google Scholar
[Jercinovic 2012] Jercinovic, M. J., et al., “Trace analysis in EPMA,” IOP Conference Series: Materials Science and Engineering 32, 012012-22 (2012).CrossRefGoogle Scholar
[Jiang 2015] Jiang, N., “Electron beam damage in oxides: a review,” Rep. Prog. Phys. 79, 016501-34 (2015).Google ScholarPubMed
[Jiang 2018] Jiang, Y., et al., “Electron ptychography of 2D materials to deep sub-ångström resolution,” Nature 559, 343-349 (2018).CrossRefGoogle Scholar
[Jin 2014] Jin, Q., et al., “Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis,” PLoS ONE 10, e0117437 (2014).CrossRefGoogle Scholar
[Jin 2017] Jin, Q., et al., “Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy,” J. Microsc. 265, 81-93 (2017).CrossRefGoogle ScholarPubMed
[Jochum 1988] Jochum, L., “Imaging x-ray microscopy with extended depth of focus by use of digital image processing system,” in [Sayre 1988], 292-295.Google Scholar
[Jochum 1995] Jochum, L. and Meyer-Ilse, W., “Partially coherent image formation with x-ray microscopes,” App. Opt. 34, 4944-4950 (1995).Google ScholarPubMed
[Johann 1931] Johann, H. H., “Die Erzeugung licht-starker Röntgenspektren mit Hilfe von Konkavkristallen,” Zeitschrift föur Physik 69, 185-206 (1931).Google Scholar
[Johannes 2017] Johannes, A., et al., “In operando x-ray imaging of nanoscale devices: composition, valence, and internal electrical fields,” Sci. Adv. 3, eaao4044 (2017).CrossRefGoogle ScholarPubMed
[Johansson 2007] Johansson, G., et al., “Three-dimensional chemical mapping by scanning transmission x-ray spec-tromicroscopy,” J. Synch. Rad. 14, 395-402 (2007).CrossRefGoogle Scholar
[Johnson 1936] Johnson, N. G., “Effects of chemical combination with oxygen and fluorine on the Ka1,2-doublet of some of the lighter elements,” Nature 138, 1056-1057 (1936).CrossRefGoogle Scholar
[Johnson 1968] Johnson, D. J., “Amplitude and phase contrast in electron-microscope images of molecular structures,” J. Roy. Microscop. Soc. 88, 39-47 (1968).CrossRefGoogle ScholarPubMed
[Johnson 1974] Johnson, D. W. and Spence, J. C. H., “Determination of the single-scattering probability distribution from plural-scattering data,” J. Phys. D 7, 771-780 (1974).CrossRefGoogle Scholar
[Johnston 1989] Johnston, J. A., “Wigner distribution and FM radar signal design,” IEE Proceedings F: Radar and Signal Processing 136, 81-87 (1989).Google Scholar
[Jones 1952] Jones, R. C., “‘Detectivity’: the reciprocal of noise equivalent input of radiation,” Nature 170, 937-938 (1952).Google Scholar
[Jones 1959] Jones, R. C., “Quantum efficiency of detectors for visible and infrared radiation,” in Marton, L., ed., Adv. Electron. Electron. Phys., volume 11, 87-183, Academic Press, (1959).Google Scholar
[Jones 1988] Jones, R., Instruments and Experiences: Papers on Measurement and Instrument Design, Wiley (1988).Google Scholar
[Jones 2015] Jones, R. O., “Density functional theory: Its origins, rise to prominence, and future,” Rev. Mod. Phys. 87, 897-923 (2015).CrossRefGoogle Scholar
[Jones 2017] Jones, M. W. M., et al., “Radiation dose limits for bioanalytical x-ray fluorescence microscopy,” Anal. Chem. 89, 12168-12175 (2017).CrossRefGoogle ScholarPubMed
[Jönsson 1928] Jönsson, E. “Absorptionsmessungen im langwelligen Röntgengebiet und Gesetze der Absorption,” PhD thesis, Uppsala University, (1928).Google Scholar
[Jordan 1881] Jordan, C., “Sur la série de Fourier,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 92, 228-230 (1881).Google Scholar
[Jordan 1970] Jordan, J. A., et al., “Kinoform lenses,” App. Opt. 9, 1883-1887 (1970).Google ScholarPubMed
[Joyeux 1988a] Joyeux, D., et al., “X-ray microscopy by holography at LURE,” in [Sayre 1988], 246-252.Google Scholar
[Joyeux 1988b] Joyeux, D. and Polack, F., “Progress in optical reconstruction of submicron x-ray holograms,” in Fal-cone, R. W. and Kirz, J., eds., OSA Proceedings on Short Wavelength Coherent Radiation: Generation and Applications, volume 2, Optical Society of America, 295-302 (1988).Google Scholar
[Joyeux 1998] Joyeux, D. and Polack, F., “A wavefront profiler as an insertion device for scanning phase contrast microscopy,” in [Thieme 1998b], II-201-205.Google Scholar
[Jungmann-Smith 2016] Jungmann-Smith, J. H., et al., “Towards hybrid pixel detectors for energy-dispersive or soft x-ray photon science,” J. Synch. Rad. 23, 385-394 (2016).CrossRefGoogle ScholarPubMed
[Jurling 2014] Jurling, A. S. and Fienup, J. R., “Applications of algorithmic differentiation to phase retrieval algorithms,” J. Opt. Soc. Am. A 31, 1348-1359 (2014).CrossRefGoogle ScholarPubMed
[Kaczmarz 1937] Kaczmarz, S., “Angenäherte Auflösung von Systemen linearer Gleichungen,” Bulletin International de l'Académie Polonaise des Sciences et des Lettres A, 355-357 (1937).Google Scholar
[Kak 1988] Kak, A. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press (1988).Google Scholar
[Kalirai 2015] Kalirai, S., et al., “X-ray fluorescence tomography of aged fluid-catalytic-cracking catalyst particles reveals insight into metal deposition processes,” Chem-CatChem 7, 3674-3682 (2015).Google ScholarPubMed
[Kalirai 2016] Kalirai, S., et al., “Visualizing dealumination of a single zeolite domain in a real-life catalytic cracking particle,” Angew. Chem. Int. Ed. 128, 11300-11304 (2016).CrossRefGoogle Scholar
[Kamijo 1995] Kamijo, N., et al., “Fabrication and testing of hard x-ray sputtered-sliced zone plate,” Rev. Sci. Inst. 66, 2132-2134 (1995).CrossRefGoogle Scholar
[Kamilov 2015] Kamilov, U. S., et al., “Learning approach to optical tomography,” Optica 2, 517-6 (2015).CrossRefGoogle Scholar
[Kamilov 2016] Kamilov, U. S., et al., “Optical tomographic image reconstruction based on beam propagation and sparse regularization,” IEEE Trans. Comput. Imaging 2, 59-70 (2016).CrossRefGoogle Scholar
[Kamiya 1963] Kamiya, K., “Theory of Fresnel zone plate,” Science of Light 12, 35-49 (1963).Google Scholar
[Kandel 2019] Kandel, S., et al., “Using automatic differentiation as a general framework for ptychographic reconstruction,” Opt. Express 27, 18653-18672 (2019).CrossRefGoogle ScholarPubMed
[Kang 2006] Kang, H., et al., “Nanometer linear focusing of hard X rays by a multilayer Laue lens,” Phys. Rev. Lett. 96, 127401 (2006).CrossRefGoogle ScholarPubMed
[Kang 2008] Kang, H., et al., “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92, 221114 (2008).CrossRefGoogle Scholar
[Kang 2013] Kang, H. J., et al., “Breaking the barriers in membrane protein crystallography,” Int. J. Biochem. Cell Bio. 45, 636-644 (2013).CrossRefGoogle ScholarPubMed
[Kanngießer 2003] Kanngießer, B., et al., “A new 3D micro x-ray fluorescence analysis set-up - first archaeomet-ric applications,” Nucl. Inst. Meth. Phys. Res. B 211, 259-264 (2003).CrossRefGoogle Scholar
[Kanno 1975] Kanno, H., et al., “Supercooling of water to -92?C under pressure,” Science 189, 880-881 (1975).CrossRefGoogle Scholar
[Kao 1990] Kao, C., et al., “Magnetic-resonance exchange scattering at the iron LII and LIII edges,” Phys. Rev. Lett. 65, 373-376 (1990).CrossRefGoogle ScholarPubMed
[Kapishnikov 2017] Kapishnikov, S., et al., “Unraveling heme detoxification in the malaria parasite by in situ correlative x-ray fluorescence microscopy and soft x-ray tomography,” Sci. Rep. 7, 1-12 (2017).CrossRefGoogle ScholarPubMed
[Karunakaran 2015] Karunakaran, C., et al., “Introduction of soft x-ray spectromicroscopy as an advanced technique for plant biopolymers research,” PLoS ONE 10, e0122959 (2015).CrossRefGoogle ScholarPubMed
[Karuppasamy 2011] Karuppasamy, M., et al., “Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate,” J. Synch. Rad. 18, 398-412 (2011).CrossRefGoogle ScholarPubMed
[Kase 2009] Kase, K. R., ed., Ionizing Radiation Exposure of the Population of the United States, volume 160, National Council on Radiation Protection and Measurements (2009).Google Scholar
[Kauffmann 2006] Kauffmann, B., et al., “How to avoid premature decay of your macromolecular crystal: a quick soak for long life,” Structure 14, 1099-1105 (2006).CrossRefGoogle ScholarPubMed
[Kaulich 1999] Kaulich, B., et al., “Feasibility of transmission x-ray microscopy at 4 keV with spatial resolutions below 150 nm,” Appl. Phys. Lett. 75, 4061-4063 (1999).CrossRefGoogle Scholar
[Kaulich 2002a] Kaulich, B., et al., “Diffracting aperture based differential phase contrast for scanning x-ray microscopy,” Opt Express 10, 1112-1117 (2002).CrossRefGoogle ScholarPubMed
[Kaulich 2002b] Kaulich, B., et al., “Differential interference contrast x-ray microscopy with twin zone plates,” J. Opt. Soc. Am. A 19, 797-806 (2002).CrossRefGoogle ScholarPubMed
[Kaulich 2009] Kaulich, B., et al., “Low-energy x-ray fluorescence microscopy opening new opportunities for bio-related research,” J. Roy. Soc. Interface 6, S641-S647 (2009).CrossRefGoogle ScholarPubMed
[Kaulich 2011] Kaulich, B., et al., “Transmission and emission x-ray microscopy: operation modes, contrast mechanisms and applications,” J. Phys. Condensed Matter 23, 083002 (2011).CrossRefGoogle ScholarPubMed
[Kaveh 1982] Kaveh, M., et al., “A comparison of Born and Rytov approximations in acoustic tomography,” in Powers, J. P., ed., Acoustical Imaging, volume 11, 325-335, Plenum Press, (1982).Google Scholar
[Kaznacheyev 2002] Kaznacheyev, K., et al., “Innershell absorption spectroscopy of amino acids,” J. Phys. Chem. A 106, 3153-3168 (2002).CrossRefGoogle Scholar
[Keller 1961] Keller, M., “Ein Biprisma-Interferometer für Elektronenwellen und seine Anwendung,” Zeitschrift für Physik 164, 274-291 (1961).CrossRefGoogle Scholar
[Kellström 1932] Kellström, G., “Experimentelle Unter-suchungen über Interferenz - und Beugungserscheinun-gen bei langwelligen Röntgenstrahlen,” Nova Acta Regiae Societatis Scientiarum Upsaliensis 8, 1-66 (1932).Google Scholar
[Kemner 2004] Kemner, K. M., et al., “Elemental and re-dox analysis of single bacterial cells by x-ray microbeam analysis,” Science 306, 686-687 (2004).CrossRefGoogle Scholar
[Kenney 1985] Kenney, J. M., et al., “Absorption microanalysis with a scanning soft x-ray microscope: mapping the distribution of calcium in bone,” J. Microsc. 138, 321-328 (1985).Google Scholar
[Keune 2015] Keune, K., et al., “Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based x-ray micro-analyses,” J. Anal. Atomic Spectr. 30, 813-827 (2015).CrossRefGoogle Scholar
[Kewish 2010a] Kewish, C. M., et al., “Reconstruction of an astigmatic hard x-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data,” Opt. Express 18, 23420-23427 (2010).CrossRefGoogle ScholarPubMed
[Kewish 2010b] Kewish, C. M., et al., “Ptychographic characterization of the wavefield in the focus of reflective hard x-ray optics,” Ultramicroscopy 110, 325-329 (2010).CrossRefGoogle ScholarPubMed
[Kikuta 1972] Kikuta, S., et al., “X-ray holography of lens-less Fourier-transform type,” Optics Comm. 5, 86-89 (1972).CrossRefGoogle Scholar
[Kilcoyne 2003] Kilcoyne, A., et al., “Interferometer-controlled scanning transmission x-ray microscopes at the Advanced Light Source,” J. Synch. Rad. 10, 125-136 (2003).CrossRefGoogle ScholarPubMed
[Kim 1986] Kim, K.-J., “Brightness, coherence and propagation characteristics of synchrotron radiation,” Nucl. Inst. Meth. Phys. Res. A 246, 71-76 (1986).CrossRefGoogle Scholar
[Kim 2005] Kim, C. U., et al., “High-pressure cooling of protein crystals without cryoprotectants,” Acta Cryst. D 61, 881-890 (2005).CrossRefGoogle ScholarPubMed
[Kim 2010] Kim, A. M., et al., “Zinc availability regulates exit from meiosis in maturing mammalian oocytes,” Nature Chem. Bio. 6, 674-681 (2010).Google ScholarPubMed
[Kim 2011] Kim, A. M., et al., “Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs,” ACS Chem. Bio. 6, 716-723 (2011).Google ScholarPubMed
[Kim 2013a] Kim, C. U., et al., “A high-pressure cryocool-ing method for protein crystals and biological samples with reduced background x-ray scatter,” J. Appl. Cryst. 46, 234-241 (2013).CrossRefGoogle ScholarPubMed
[Kim 2013b] Kim, J., et al., “Compact prototype apparatus for reducing the circle of confusion down to 40 nm for x-ray nanotomography,” Rev. Sci. Inst. 84, 035006 (2013).CrossRefGoogle ScholarPubMed
[Kim 2016] Kim, J. W., et al., “Observation of x-ray radiation pressure effects on nanocrystals,” J. Appl. Phys. 120, 163102 (2016).CrossRefGoogle Scholar
[Kim 2017] Kim, K.-J., et al., Synchrotron Radiation and Free-Electron Lasers, Cambridge University Press (2017).CrossRefGoogle Scholar
[Kimura 2014] Kimura, T., et al., “Imaging live cell in micro-liquid enclosure by x-ray laser diffraction,” Nature Comm. 5, 3052 (2014).CrossRefGoogle ScholarPubMed
[King 1989] King, P. L., et al., “Image-processing of multispectral x-ray photoelectron-spectroscopy images,” J. Vac. Sci. Tech. A 7, 3301-3304 (1989).CrossRefGoogle Scholar
[King 2013] King, A., et al., “First laboratory x-ray diffraction contrast tomography for grain mapping of polycrys-tals,” J. Appl. Cryst. 46, 1734-1740 (2013).CrossRefGoogle Scholar
[Kinoshita 1992] Kinoshita, K., et al., “The electronic zooming TV readout system for an x-ray microscope,” in [Michette 1992], 335-337.Google Scholar
[Kipp 2001] Kipp, L., et al., “Sharper images by focusing soft x-rays with photon sieves,” Nature 414, 184-188 (2001).CrossRefGoogle ScholarPubMed
[Kirchner 1956] Kirchner, F., “Über die Bestimmung der Lichtgeschwindigkeit aus elektromagnetischen Messun-gen nach W. Weber und R. Kohlrausch,” Naturwis-senschaften 43, 529-533 (1956).CrossRefGoogle Scholar
[Kirchner 1957] Kirchner, F., “Determination of the velocity of light from electromagnetic measurements according to W. Weber and R. Kohlrausch,” Am. J. Phys. 25, 623-629 (1957).CrossRefGoogle Scholar
[Kirian 2016] Kirian, R. A. and Chapman, H. N., “Imaging of objects by coherent diffraction of x-ray free-electron laser pulses,” in [Jaeschke 2016], 1135-1195.Google Scholar
[Kirkham 2010] Kirkham, R., et al., “The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing,” AIP Conf. Proc. 1234, 240-243 (2010).Google Scholar
[Kirkpatrick 1948a] Kirkpatrick, P. and Baez, A. V., “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 766-774 (1948).CrossRefGoogle ScholarPubMed
[Kirkpatrick 1948b] Kirkpatrick, P., et al., “Geometrical optics of grazing incidence reflectors,” Phys. Rev. 73, 535-536 (1948).Google Scholar
[Kirkpatrick 1949a] Kirkpatrick, P., “X-ray images by refractive focusing,” J. Opt. Soc. Am. 39, 796 (1949).CrossRefGoogle ScholarPubMed
[Kirkpatrick 1949b] Kirkpatrick, P., “The x-ray microscope,” Scientific American 180, 44-47 (1949).CrossRefGoogle ScholarPubMed
[Kirkpatrick 1953] Kirkpatrick, P. and Pattee, H., “Approaches to x-ray microscopy,” Advances in Biological and Medical Physics 3, 247-283 (1953).Google ScholarPubMed
[Kirz 1974] Kirz, J., “Phase zone plates for X rays and the extreme UV,” J. Opt. Soc. Am. 64, 301-309 (1974).CrossRefGoogle Scholar
[Kirz 1978] Kirz, J., et al., “Comparative analysis of x-ray emission microscopies for biological specimens,” Ann. NY Acad. Sci. 306, 291-305 (1978).CrossRefGoogle Scholar
[Kirz 1980a] Kirz, J., “Mapping the distribution of particular atomic species,” Ann. NY Acad. Sci. 342, 273-287 (1980).CrossRefGoogle Scholar
[Kirz 1980b] Kirz, J., “Specimen damage considerations in biological microprobe analysis,” in Scanning Electron Microscopy, volume 2, SEM Inc., 239-249 (1980).Google Scholar
[Kirz 1980c] Kirz, J., et al., “Plans for a scanning transmission x-ray microscope,” Ann. NY Acad. Sci. 342, 135-147 (1980).CrossRefGoogle Scholar
[Kirz 1984] Kirz, J. and Sayre, D., “Prospects and problems in x-ray microscopy,” in [Schmahl 1984], 262-267.Google Scholar
[Kirz 1994] Kirz, J., et al., “Scanning transmission x-ray microscopy at the NSLS,” in [Aristov 1994], 41-61.Google Scholar
[Kirz 1995] Kirz, J., et al., “Soft x-ray microscopes and their biological applications,” Q. Rev. Biophys. 28, 33-130 (1995).CrossRefGoogle ScholarPubMed
[Kirz 2009] Kirz, J. and Jacobsen, C., “The history and future of x-ray microscopy,” J. Phys. Conf. Ser. 186, 012001 (2009).CrossRefGoogle Scholar
[Kirz 2012] Kirz, J., et al., “David Sayre,” Physics Today 65, 65-66 (2012).CrossRefGoogle Scholar
[Kiskinova 1999] Kiskinova, M., et al., “Synchrotron radiation scanning photoemission microscopy: instrumentation and application in surface science,” Surf. Rev. Lett. 6, 265-286 (1999).CrossRefGoogle Scholar
[Kissel 1990] Kissel, L. and Pratt, R. H., “Corrections to tabulated anomalous-scattering factors,” Acta Cryst. A 46, 170-175 (1990).CrossRefGoogle Scholar
[Kissel 1995] Kissel, L., et al., “The validity of form-factor, modified-form-factor and anomalous-scattering-factor approximations in elastic scattering calculations,” Acta Cryst. A 51, 271-288 (1995).CrossRefGoogle Scholar
[Kissel 2000] Kissel, L., “RTAB: the Rayleigh scattering database,” Radiat. Phys. Chem. 59, 185-200 (2000).CrossRefGoogle Scholar
[Kitamura 2007] Kitamura, R., et al., “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” App. Opt. 46, 8118-8133 (2007).Google ScholarPubMed
[Klar 2000] Klar, T. A., et al., “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad. Sci. 97, 8206-8210 (2000).CrossRefGoogle ScholarPubMed
[Klein 1928] Klein, O. and Nishina, Y., “The scattering of light by free electrons according to Dirac's new relativistic dynamics,” Nature 122, 398-399 (1928).CrossRefGoogle Scholar
[Klein 1929] Klein, O. and Nishina, Y., “Über die Streu-ung von Strahlung durch freie Elektronen nach der neuen relativischen Quantendynamik von Dirac,” Zeitschrift für Physik 52, 853-868 (1929).CrossRefGoogle Scholar
[Klein 1967] Klein, W. R. and Cook, B. D., “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123-134 (1967).CrossRefGoogle Scholar
[Klug 1972] Klug, A. and Crowther, R. A., “Three-dimensional image reconstruction from the viewpoint of information theory,” Nature 238, 435-440 (1972).CrossRefGoogle Scholar
[Knoll 2010] Knoll, G. F., Radiation Detection and Measurement, Wiley, fourth edition (2010).Google Scholar
[Ko 1995] Ko, C.-H., et al., “Development of a second generation scanning photoemission microscope with a zone plate generated microprobe at the National Synchrotron Light Source,” Rev. Sci. Inst. 66, 1416-1418 (1995).CrossRefGoogle Scholar
[Kobayashi 2016a] Kobayashi, A., et al., “Specimen preparation for cryogenic coherent x-ray diffraction imaging of biological cells and cellular organelles by using the x-ray free-electron laser at SACLA,” J. Synch. Rad. 23, 975-989 (2016).CrossRefGoogle ScholarPubMed
[Kobayashi 2016b] Kobayashi, A., et al., “TAKASAGO-6 apparatus for cryogenic coherent x-ray diffraction imaging of biological non-crystalline particles using x-ray free electron laser at SACLA,” Rev. Sci. Inst. 87, 053109 (2016).Google ScholarPubMed
[Koch 1998] Koch, A., et al., “X-ray imaging with sub-micrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15, 1940-1951 (1998).CrossRefGoogle Scholar
[Köhler 1893] Köhler, A., “Ein neues Beleuchtungsverfab-ren für mikrophotographische Zwecke,” Zeitschrift für Wissenschaftliche Mikroskopie und für Mikroskopische Technik 10, 433-440 (1893).Google Scholar
[Köhler 1894] Köhler, A., “New method for illumination for photomicrographical purposes,” J. Roy. Microscop. Soc. 14, 261-262 (1894).Google Scholar
[Kondratenko 1977] Kondratenko, A. M. and Skrinsky, A. N., “Use of radiation of electron storage rings in x-ray holography of objects,” Opt. Spectrosc. 42, 189-192 (1977).Google Scholar
[Kondratenko 1980] Kondratenko, A. M. and Saldin, E. L., “Generation of coherent radiation by a relativistic electron beam in an ondulator,” Particle Accelerators 10, 207-216 (1980).Google Scholar
[Kong 2014] Kong, X., et al., “Water accommodation and desorption kinetics on ice,” J. Phys. Chem. A 118, 3973-3979 (2014).CrossRefGoogle ScholarPubMed
[König 1943] König, H., “Eine kubische Eismodifika-tion,” Zeitschrift für Kristallographie: Krystallgeometrie, Kristallphysik, Kristallchemie 105, 279-286 (1943).Google Scholar
[Kopittke 2014] Kopittke, P. M., et al., “Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging,” New Phytologist 201, 1251-1262 (2014).CrossRefGoogle ScholarPubMed
[Koprinarov 2002] Koprinarov, I. N., et al., “Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft x-ray images,” J. Phys. Chem. B 106, 5358-5364 (2002).CrossRefGoogle Scholar
[Kosior 2012a] Kosior, E., et al., “Combined use of hard x-ray phase contrast imaging and x-ray fluorescence microscopy for sub-cellular metal quantification,” J. Struct. Bio. 177, 239-247 (2012).CrossRefGoogle ScholarPubMed
[Kosior 2012b] Kosior, E., et al., “Study of radiation effects on the cell structure and evaluation of the dose delivered by x-ray and a-particles microscopy,” Appl. Phys. Lett. 101, 263102 (2012).CrossRefGoogle Scholar
[Kosugi 1980] Kosugi, N. and Kuroda, H., “Efficient methods for solving the open-shell SCF problem and for obtaining an initial guess. the “one-Hamiltonian” and the “partial SCF” methods,” Chem. Phys. Lett. 74, 490-493 (1980).CrossRefGoogle Scholar
[Kosugi 1987] Kosugi, N., “Strategies to vectorize conventional SCF-CI algorithms,” Theoretica Chimica Acta 72, 149-173 (1987).CrossRefGoogle Scholar
[Kottler 2007] Kottler, C., et al., “A two-directional approach for grating based differential phase contrast imaging using hard x-rays,” Opt. Express 15, 1175-1181 (2007).CrossRefGoogle ScholarPubMed
[Kotula 2003] Kotula, P., et al., “Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool,” Microsc. Microanal. 9, 1-17 (2003).CrossRefGoogle ScholarPubMed
[Koulkès-Pujo 1971] Koulkès-Pujo, A. M., et al., “Scavenger studies of electron pulse irradiated solutions at hydrated electron half lives in the range 35-0.35 nanoseconds,” Int. J. Radiat. Phys. Chem. 3, 333-344 (1971).CrossRefGoogle Scholar
[Kowalski 2007] Kowalski, G., “The influence of fixed errors of a detector array on the reconstruction of objects from their projections,” IEEE Trans. Nucl. Sci. 24, 2006-2016 (2007).Google Scholar
[Krause 1979a] Krause, M., “Atomic radiative and radiation-less yields for K and L shells,” J. Phys. Chem. Ref. Data 8, 307-327 (1979).CrossRefGoogle Scholar
[Krause 1979b] Krause, M. and Oliver, J., “Natural widths of atomic K and L levels, Ka x-ray lines and several KLL Auger lines,” J. Phys. Chem. Ref. Data 8, 329-338 (1979).CrossRefGoogle Scholar
[Krenkel 2013] Krenkel, M., et al., “Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging,” Opt. Express 21, 2220-2235 (2013).CrossRefGoogle ScholarPubMed
[Kretzschmar 2005] Kretzschmar, R. and Schäfer, T., “Metal retention and transport on colloidal particles in the environment,” Elements 1, 205-210 (2005).CrossRefGoogle Scholar
[Krinsky 1983] Krinsky, S., “Undulators as sources of synchrotron radiation,” IEEE Trans. Nucl. Sci. 30, 3078-3082 (1983).CrossRefGoogle Scholar
[Kühlbrandt 2014] Kühlbrandt, W., “The resolution revolution,” Science 343, 1443-1444 (2014).CrossRefGoogle ScholarPubMed
[Kumakhov 1990] Kumakhov, M. A. and Komarov, F. F., “Multiple reflection from surface x-ray optics,” Phys. Rep. 191, 289-350 (1990).CrossRefGoogle Scholar
[Kunz 1995] Kunz, C. and Voss, J., “Scientific progress and improvement of optics in the VUV range,” Rev. Sci. Inst. 66, 2021-2029 (1995).CrossRefGoogle Scholar
[Kurapova 2007] Kurapova, O., et al., “Optimized fabrication of silicon nanofocusing x-ray lenses using deep reactive ion etching,” J. Vac. Sci. Tech. B 25, 1626-1629 (2007).CrossRefGoogle Scholar
[Kurokhtin 2002] Kurokhtin, A. N. and Popov, A. V., “Simulation of high-resolution x-ray zone plates,” J. Opt. Soc. Am. A 19, 315-324 (2002).CrossRefGoogle ScholarPubMed
[Kurtis 1998] Kurtis, K. E., et al., “Imaging of ASR gel by soft x-ray microscopy,” Cement Concrete Res. 28, 411-421 (1998).CrossRefGoogle Scholar
[Kurtis 2000] Kurtis, K. E., et al., “Soft x-ray spectromi-croscopy for in situ study of corrosion,” Corrosion Sci. 42, 1327-1336 (2000).CrossRefGoogle Scholar
[Kutzelnigg 1996] Kutzelnigg, W. and Morgan III, J. D., “Hund's rules,” Zeitschrift für Physik D 36, 197-214 (1996).Google Scholar
[Kuzay 2001] Kuzay, T. M., et al., “X-ray beam/biomaterial thermal interactions in third-generation synchrotron sources,” Acta Cryst. D 57, 69-81 (2001).CrossRefGoogle ScholarPubMed
[La Rivière 2004] La Rivière, P. J., “Approximate analytic reconstruction in x-ray fluorescence computed tomography,” Phys. Med. Bio. 49, 2391-2405 (2004).CrossRefGoogle ScholarPubMed
[La Rivière 2006] La Rivière, P. J., et al., “Penalized-likelihood image reconstruction for x-ray fluorescence computed tomography,” Opt. Eng. 45, 077005 (2006).CrossRefGoogle Scholar
[Laanait 2014] Laanait, N., et al., “Full-field x-ray reflection microscopy of epitaxial thin-films,” J. Synch. Rad. 21, 1252-1261 (2014).CrossRefGoogle ScholarPubMed
[Laanait 2015] Laanait, N., et al., “X-ray-driven reaction front dynamics at calcite-water interfaces,” Science 349, 1330-1334 (2015).CrossRefGoogle ScholarPubMed
[Labrenz 2000] Labrenz, M., et al., “Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria,” Science 290, 1744-1747 (2000).CrossRefGoogle ScholarPubMed
[Ladd 1956] Ladd, W. A., et al., “High-resolution microra-diography,” Science 123, 370-371 (1956).CrossRefGoogle Scholar
[Lai 1995] Lai, B., et al., “Development of a hard x-ray imaging microscope,” Rev. Sci. Inst. 66, 2287-2289 (1995).CrossRefGoogle Scholar
[Lam 2010] Lam, K. P., et al., “Characterizing magnetism of individual magnetosomes by x-ray magnetic circular dichroism in a scanning transmission x-ray microscope,” Chem. Geo. 270, 110-116 (2010).CrossRefGoogle Scholar
[Langmore 1973] Langmore, J. P., et al., “The collection of scattered electrons in dark field electron microscopy: I. elastic scattering,” Optik 38, 335-350 (1973).Google Scholar
[Langmore 1992] Langmore, J. P. and Smith, M. F., “Quantitative energy-filtered electron microscopy of biological molecules in ice,” Ultramicroscopy 46, 349-373 (1992).CrossRefGoogle ScholarPubMed
[Langmuir 1913] Langmuir, I., “The vapor pressure of metallic tungsten,” Phys. Rev. 2, 329-342 (1913).CrossRefGoogle Scholar
[Larabell 2004] Larabell, C. and Le Gros, M., “X-ray tomography generates 3-D reconstructions of the yeast, Saccha-romyces cerevisiae, at 60-nm resolution,” Molec. Bio. Cell 15, 957-962 (2004).Google Scholar
[Larson 2002] Larson, B. C., et al., “Three-dimensional x-ray structural microscopy with submicrometre resolution,” Nature 415, 887-890 (2002).CrossRefGoogle ScholarPubMed
[Larsson 1924] Larsson, A., et al., “Der experimentelle Nachweis der Brechung von Röntgenstrahlen,” Naturwis-senschaften 12, 1212-1213 (1924).CrossRefGoogle Scholar
[Latham 2016] Latham, S. J., et al., “Multi-resolution ra-diograph alignment for motion correction in x-ray micro-tomography,” Proc. SPIE 9967, 996710 (2016).Google Scholar
[Laue 1912] Laue, M., “Eine quantitative Prüfung der Theorie für die Interferenz-Erscheinungen bei Röngtenstrahlen,” Sitzungsberichte der Königlich Bay-erischen Akademie der Wissenschaften Mathematisch-Physikalische Klaser 42, 363-373 (1912).Google Scholar
[Laue 1913] Laue, M., “Eine quantitative Prüfung der Theo-rie für die Interferenzerscheinungen bei Röntgenstrahlen,” Annalen der Physik 41, 989-1002 (1913).Google Scholar
[Le Gros 2005] Le Gros, M., et al., “X-ray tomography of whole cells,” Curr. Opin. Struct. Bio. 15, 593-600 (2005).CrossRefGoogle ScholarPubMed
[Le Gros 2009] Le Gros, M., et al., “High-aperture cryogenic light microscopy,” J. Microsc. 235, 1-8 (2009).CrossRefGoogle ScholarPubMed
[Le Gros 2014] Le Gros, M. A., et al., “Biological soft x-ray tomography on beamline 2.1 at the Advanced Light Source,” J. Synch. Rad. 21, 1370-1377 (2014).CrossRefGoogle ScholarPubMed
[Le Gros 2016] Le Gros, M. A., et al., “Soft x-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo,” Cell Reports 17, 2125-2136 (2016).Google ScholarPubMed
[Leapman 1995] Leapman, R. D. and Sun, S., “Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage,” Ultrami-croscopy 59, 71-79 (1995).Google ScholarPubMed
[Leccia 2010] Leccia, E., et al., “Hard alpha-keratin degradation inside a tissue under high flux x-ray synchrotron micro-beam: a multi-scale time-resolved study,” J. Struct. Bio. 170, 69-75 (2010).CrossRefGoogle ScholarPubMed
[LeCun 2015] LeCun, Y., et al., “Deep learning,” Nature 521, 436-444 (2015).CrossRefGoogle ScholarPubMed
[Lee 1999] Lee, D. D. and Seung, H. S., “Learning the parts of objects by non-negative matrix factorization,” Nature 401, 788-791 (1999).CrossRefGoogle ScholarPubMed
[Lee 2014] Lee, V., et al., “Scanning transmission x-ray microscopy of nano structured thin film catalysts for proton-exchange-membrane fuel cells,” J. Power Sources 263, 163-174 (2014).CrossRefGoogle Scholar
[LeFurgey 1992] LeFurgey, A., et al., “Real-time quantitative elemental analysis and mapping: microchemical imaging in cell physiology,” J. Microsc. 165, 191-223 (1992).CrossRefGoogle ScholarPubMed
[Lehmann 2008] Lehmann, J., et al., “Spatial complexity of soil organic matter forms at nanometre scales,” Nature Geoscience 1, 238-242 (2008).CrossRefGoogle Scholar
[Lehr 1997] Lehr, J., “3D x-ray microscopy: tomographic imaging of mineral sheaths of bacteria Lep-tothrix ochracea with the Göttingen x-ray microscope at BESSY,” Optik 104, 166-170 (1997).Google Scholar
[Leidenfrost 1966] Leidenfrost, J. G., “On the fixation of water in diverse fire,” Int. J. Heat Mass Transf. 9, 1153-1166 (1966).CrossRefGoogle Scholar
[Leiros 2001] Leiros, H. S., et al., “Atomic resolution structures of trypsin provide insight into structural radiation damage,” Acta Cryst. D 57, 488-497 (2001).CrossRefGoogle ScholarPubMed
[Lemelle 2017] Lemelle, L., et al., “Analytical requirements for quantitative x-ray fluorescence nano-imaging of metal traces in solid samples,” Trends Anal. Chem. 91, 104-111 (2017).CrossRefGoogle Scholar
[Lengeler 1998] Lengeler, B., et al., “Transmission and gain of singly and doubly focusing refractive x-ray lenses,” J. Appl. Phys. 84, 5855-5861 (1998).CrossRefGoogle Scholar
[Lengeler 1999a] Lengeler, B., et al., “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synch. Rad. 6, 1153-1167 (1999).CrossRefGoogle Scholar
[Lengeler 1999b] Lengeler, B., et al., “A microscope for hard x rays based on parabolic compound refractive lenses,” Appl. Phys. Lett. 74, 3924-3926 (1999).CrossRefGoogle Scholar
[Lenz 1954] Lenz, F., “Zur Streuung Mittelschneller Elek-tronen in KleinsteWinkel,” Zeitschrift für Naturforschung A 9, 185-204 (1954).CrossRefGoogle Scholar
[Leong 2010] Leong, P. A., et al., “Correcting for the Ewald sphere in high-resolution single-particle reconstructions,” Meth. Enzymology 482, 369-380 (2010).Google ScholarPubMed
[Leontowich 2012] Leontowich, A. F. G., and Hitchcock, A. P., “Experimental investigation of beam heating in a soft x-ray scanning transmission x-ray microscope,” The Analyst 137, 370-375 (2012).CrossRefGoogle Scholar
[Leontowich 2013] Leontowich, A. F. G., “Utility of the G value and the critical dose to soft x-ray radiation damage of polyacrylonitrile,” Radiat. Phys. Chem. 90, 87-91 (2013).CrossRefGoogle Scholar
[Lerotic 2004] Lerotic, M., et al., “Cluster analysis of soft x-ray spectromicroscopy data,” Ultramicroscopy 100, 35-57 (2004).CrossRefGoogle ScholarPubMed
[Lerotic 2005] Lerotic, M., et al., “Cluster analysis in soft x-ray spectromicroscopy: finding the patterns in complex specimens,” J. Electron Spect. Rel. Phenom. 144-147, 1137-1143 (2005).Google Scholar
[Lerotic 2014] Lerotic, M., et al., “MANTiS: a program for the analysis of x-ray spectromicroscopy data,” J. Synch. Rad. 21, 1206-1212 (2014).CrossRefGoogle ScholarPubMed
[Leschziner 2007] Leschziner, A. E. and Nogales, E., “Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions,” Ann. Rev. Biophys. Biomol. Struct. 36, 43-62 (2007).CrossRefGoogle ScholarPubMed
[Levine 1999] Levine, Z. H., et al., “Tomographic reconstruction of an integrated circuit interconnect,” Appl. Phys. Lett. 74, 150-152 (1999).CrossRefGoogle Scholar
[L'Huillier 1993] L'Huillier, A. and Balcou, P., “High-order harmonic generation in rare gases with a 1-ps 1053-nm laser,” Phys. Rev. Lett. 70, 774-777 (1993).Google ScholarPubMed
[Li 2013] Li, X., et al., “Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM,” Nature Methods 10, 584-590 (2013).CrossRefGoogle ScholarPubMed
[Li 2014a] Li, P., et al., “Ptychographic inversion viaWigner distribution deconvolution: noise suppression and probe design,” Ultramicroscopy 147, 106-113 (2014).CrossRefGoogle ScholarPubMed
[Li 2014b] Li, Y., et al., “Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes,” Nature Mater. 13, 1149-1156 (2014).CrossRefGoogle ScholarPubMed
[Li 2015a] Li, K. and Jacobsen, C., “Rapid calculation of paraxial wave propagation for cylindrically symmetric optics,” J. Opt. Soc. Am. A 32, 2074-2081 (2015).CrossRefGoogle ScholarPubMed
[Li 2015b] Li, L., et al., “Visualization of electrochemically driven solid-state phase transformations using operando hard x-ray spectro-imaging,” Nature Comm. 6, 6883 (2015).CrossRefGoogle ScholarPubMed
[Li 2015c] Li, Y.-F., et al., “Synchrotron radiation techniques for nanotoxicology,” Nanomed. Nan-otech. Bio. Med. 11, 1531-1549 (2015).Google ScholarPubMed
[Li 2017a] Li, K., et al., “Multislice does it all - calculating the performance of nanofocusing x-ray optics,” Opt. Express 25, 1831-1846 (2017).Google ScholarPubMed
[Li 2017b] Li, K., et al., “Fabrication of hard x-ray zone plates with high aspect ratio using metal-assisted chemical etching,” J. Vac. Sci. Tech. B 35, 06G901 (2017).CrossRefGoogle Scholar
[Li 2018a] Li, K. and Jacobsen, C., “More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in x-ray microscopy,” J. Synch. Rad. 25, 1048-1059 (2018).CrossRefGoogle ScholarPubMed
[Li 2018b] Li, P. and Maiden, A. M., “Multi-slice ptycho-graphic tomography,” Sci. Rep. 8, 2049 (2018).CrossRefGoogle ScholarPubMed
[Liao 2014] Liao, K., et al., “Analysis of tilted multilayer Laue lens with stochastic layer thickness error,” Optics Comm. 325, 111-115 (2014).CrossRefGoogle Scholar
[Lim 2016] Lim, J., et al., “Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles,” Science 353, 566-571 (2016).CrossRefGoogle ScholarPubMed
[Lima 2009] Lima, E., et al., “Cryogenic x-ray diffraction microscopy for biological samples,” Phys. Rev. Lett. 103, 198102 (2009).CrossRefGoogle ScholarPubMed
[Lima 2014] Lima, E., et al., “Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreserva-tion,” Phys. Rev. E 90, 042713 (2014).CrossRefGoogle Scholar
[Lin 2017] Lin, F., et al., “Synchrotron x-ray analytical techniques for studying materials electrochemistry in rechargeable batteries,” Chem. Rev. 117, 13123-13186 (2017).CrossRefGoogle ScholarPubMed
[Lindaas 1996] Lindaas, S., et al., “X-ray holographic microscopy by means of photoresist recording and atomic-force microscope readout,” J. Opt. Soc. Am. A 13, 1788-1800 (1996).CrossRefGoogle Scholar
[Lindl 1995] Lindl, J., “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Physics of Plasmas 2, 3933-4024 (1995).CrossRefGoogle Scholar
[Linfoot 1953] Linfoot, E. H. and Wolf, E., “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. Lon.¡ B 66, 145-149 (1953).Google Scholar
[Lipson 1958] Lipson, H. and Taylor, C. A., Fourier Transforms and X-Ray Diffraction, G., Bell and Sons (1958).Google Scholar
[Liu 1987] Liu, G. and Scott, P. D., “Phase retrieval and twin-image elimination for in-line Fresnel holograms,” J. Opt. Soc. Am. A 4, 159-165 (1987).CrossRefGoogle Scholar
[Liu 2004] Liu, C., et al., “Small d-spacing WSi2/Si narrow bandpass multilayers,” Proc. SPIE 5537, 154-160 (2004).Google Scholar
[Liu 2005] Liu, C., et al., “Depth-graded multilayers for application in transmission geometry as linear zone plates,” J. Appl. Phys. 98, 113519 (2005).CrossRefGoogle Scholar
[Liu 2006] Liu, C., et al., “Film stress studies and the multilayer Laue lens project,” Proc. SPIE 6317, 63170J (2006).CrossRefGoogle Scholar
[Liu 2011] Liu, W., et al., “Hard x-ray nano-focusing with Montel mirror optics,” Nucl. Inst. Meth. Phys. Res. A 649, 169-171 (2011).CrossRefGoogle Scholar
[Liu 2012a] Liu, Y., et al., “TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission x-ray microscopy,” J. Synch. Rad. 19, 281-287 (2012).CrossRefGoogle ScholarPubMed
[Liu 2012b] Liu, Y., et al., “Extended depth of focus for transmission x-ray microscope,” Opt. Lett. 37, 3708-3710 (2012).CrossRefGoogle ScholarPubMed
[Liu 2015a] Liu, G., et al., “Graphene-based membranes,” Chem. Soc. Rev. 44, 5016-5030 (2015).CrossRefGoogle ScholarPubMed
[Liu 2015b] Liu, X., et al., “In situ Bragg coherent diffraction imaging study of a cement phase microcrystal during hydration,” Cryst. Growth Des. 15, 3087-3091 (2015).CrossRefGoogle Scholar
[Livet 2000] Livet, F., et al., “Using direct illumination CCDs as high-resolution area detectors for x-ray scattering,” Nucl. Inst. Meth. Phys. Res. A 451, 596-609 (2000).CrossRefGoogle Scholar
[Llopart 2002] Llopart, X., et al., “Medipix2: a 64-k pixel readout chip with 55-µm square elements working in single photon counting mode,” IEEE Trans. Nucl. Sci. 49, 2279-2283 (2002).CrossRefGoogle Scholar
[Loh 2009] Loh, N.-T. D. and Elser, V., “Reconstruction algorithm for single-particle diffraction imaging experiments,” Phys. Rev. E 80, 026705 (2009).CrossRefGoogle ScholarPubMed
[Loh 2010] Loh, N. D., et al., “Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns,” Phys. Rev. Lett. 104, 225501 (2010).CrossRefGoogle ScholarPubMed
[Lombi 2011] Lombi, E., et al., “Trends in hard x-ray fluorescence mapping: environmental applications in the age of fast detectors,” Anal. Bioanal. Chem. 400, 1637-1644 (2011).CrossRefGoogle ScholarPubMed
[London 1989] London, R. A., et al., “Wavelength choice for soft x-ray laser holography of biological samples,” App. Opt. 28, 3397-3404 (1989).Google ScholarPubMed
[London 1992] London, R. A., et al., “Role of x-ray induced damage in biological microimaging,” Proc. SPIE 1741, 333-340 (1992).Google Scholar
[Lonsdale 1962] Lonsdale, K., ed., International Tables for X-ray Crystallography, International Union of Crystallography (1962).Google Scholar
[Loo 1988] Loo, B. W., et al., “Ballistic deficits in pulse shaping amplifiers,” IEEE Trans. Nucl. Sci. 35, 114-118 (1988).CrossRefGoogle Scholar
[Loo 2000] Loo, B. W. Jr., et al., “Automatic image acquisition, calibration and montage assembly for biological x-ray microscopy,” J. Microsc. 197, 185-201 (2000).CrossRefGoogle ScholarPubMed
[Lovas 1982] Lovas, I., et al., “Design and assembly of a high resolution Schwarzschild microscope for soft x rays,” Proc. SPIE 316, 90-99 (1982).Google Scholar
[Low 1966] Low, B. W., et al., “Studies of insulin crystals at low temperatures: effects on mosaic character and radiation sensitivity,” Proc. Nat. Acad. Sci. 56, 1746-1750 (1966).CrossRefGoogle ScholarPubMed
[Lowe 2007] Lowe, B. G. and Sareen, R. A., “A measurement of the electron-hole pair creation energy and the Fano factor in silicon for 5.9 keV x-rays and their temperature dependence in the range 80-270 K,” Nucl. Inst. Meth. Phys. Res. A 576, 367-370 (2007).CrossRefGoogle Scholar
[Lowe 2014] Lowe, B. G. and Sareen, R. A., Semiconductor X-ray Detectors, CRC Press (2014).Google Scholar
[Lu 2006] Lu, M. “Nanofabrication of fresnel zone plates for soft x-ray imaging at carbon edge,” PhD thesis, Department of Physics and Astronomy, Stony Brook University, (2006).Google Scholar
[Luby-Phelps 2000] Luby-Phelps, K., “Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area,” Int. Rev. Cytology 192, 189-221 (2000).Google ScholarPubMed
[Lucy 1974] Lucy, L. B., “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).CrossRefGoogle Scholar
[Lucy 1994] Lucy, L. B., “Optimum strategies for inverse problems in statistical astronomy,” Astron. Astrophys. 289, 983-994 (1994).Google Scholar
[Luyet 1940] Luyet, B. J. and Gehenio, P. M., Life and Death at Low Temperatures, Biodynamica (1940).Google Scholar
[Lytle 1982] Lytle, F. W., et al., “The history and modern practice of EXAFS spectroscopy,” in Bonelle, C. and Mandé, C., eds., Advances in X-ray Spectroscopy, 267-286, Pergamon Press, (1982).Google Scholar
[Macedo 2009] Macedo, S., et al., “Can soaked-in scavengers protect metalloprotein active sites from reduction during data collection?,” J. Synch. Rad. 16, 191-204 (2009).CrossRefGoogle ScholarPubMed
[Macià 2012] Macià, F., et al., “Perpendicular magnetic anisotropy in ultrathin Co|Ni multilayer films studied with ferromagnetic resonance and magnetic x-ray microspec-troscopy,” J. Magn. Magn. Mater. 324, 3629-3632 (2012).CrossRefGoogle Scholar
[Maddali 2018] Maddali, S., et al., “Sparse recovery of undersampled intensity patterns for coherent diffraction imaging at high x-ray energies,” Sci. Rep. 8, 4959 (2018).CrossRefGoogle ScholarPubMed
[Madden 1963] Madden, R. P. and Codling, K., “New au-toionizing atomic energy levels in He, Ne, and Ar,” Phys. Rev. Lett. 10, 516-518 (1963).CrossRefGoogle Scholar
[Mader 2013] Mader, K. S., et al., “A quantitative framework for the 3D characterization of the osteocyte lacunar system,” Bone 57, 142-154 (2013).CrossRefGoogle ScholarPubMed
[Madey 1971] Madey, J. M. J., “Stimulated emission of Bremsstrahlung in a periodic magnetic field,” J. Appl. Phys. 42, 1906-1913 (1971).CrossRefGoogle Scholar
[Madey 2016] Madey, J. M. J., et al., “The free electron laser: conceptual history,” Phys. Scripta 91, 083003-11 (2016).CrossRefGoogle Scholar
[Mahajan 1983] Mahajan, V. N., “Strehl ratio for primary aberrations in terms of their aberration variance,” J. Opt. Soc. Am. 73, 860-861 (1983).CrossRefGoogle Scholar
[Maiden 2009] Maiden, A. M. and Rodenburg, J. M., “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256-1262 (2009).CrossRefGoogle ScholarPubMed
[Maiden 2012a] Maiden, A. M., et al., “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29, 1606-1614 (2012).CrossRefGoogle ScholarPubMed
[Maiden 2012b] Maiden, A. M., et al., “An annealing algorithm to correct positioning errors in ptychography,” Ul-tramicroscopy 120, 64-72 (2012).Google ScholarPubMed
[Maiden 2013] Maiden, A. M., et al., “Soft x-ray spectromi-croscopy using ptychography with randomly phased illumination,” Nature Comm. 4, 1669 (2013).CrossRefGoogle ScholarPubMed
[Maiden 2017] Maiden, A. M., et al., “Further improvements to the ptychographical iterative engine,” Optica 4, 736-745 (2017).CrossRefGoogle Scholar
[Maire 2014] Maire, E. and Withers, P. J., “Quantitative x-ray tomography,” Int. Mater. Rev. 59, 1-43 (2014).CrossRefGoogle Scholar
[Mak 2014] Mak, R., et al., “Non-negative matrix analysis for effective feature extraction in x-ray spectromi-croscopy,” Faraday Disc. 171, 357-371 (2014).CrossRefGoogle Scholar
[Mak 2016] Mak, R., et al., “Non-negative matrix analysis in x-ray spectromicroscopy: choosing regularizers,” AIP Conf. Proc. 1696, 020034 (2016).CrossRefGoogle ScholarPubMed
[Malinowski 1991] Malinowski, E. R., Factor analysis in chemistry, Wiley, second edition (1991).Google Scholar
[Mallett 1966] Mallett, G. R., et al., eds., Advances in X-ray Analysis, volume 9, Springer (1966).CrossRefGoogle Scholar
[Mancosky 2005] Mancosky, D., et al., “Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy,” Cellulose 12, 35-41 (2005).CrossRefGoogle Scholar
[Mancuso 2019] Mancuso, A. P., et al., “The single particles, clusters and biomolecules and serial femtosecond crystallography instrument of the European XFEL: initial installation,” Journal of Synchrotron Radiation 26, 660-676 (2019).CrossRefGoogle ScholarPubMed
[Mandawala 2016] Mandawala, A. A., et al., “Cryopreserva-tion of animal oocytes and embryos: current progress and future prospects,” Theriogenology 86, 1637-1644 (2016).CrossRefGoogle ScholarPubMed
[Mandé 1982] Mandé, C. and Sapre, V. B., “Chemical shifts in x-ray absorption spectra,” in Bonelle, C. and Mandé, C., eds., Advances in X-ray Spectroscopy, 287-301, Pergamon Press, (1982).Google Scholar
[Marchesini 2003] Marchesini, S., et al., “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B 68, 140101 (2003).CrossRefGoogle Scholar
[Marchesini 2007] Marchesini, S., “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Inst. 78, 011301 (2007).CrossRefGoogle ScholarPubMed
[Marchesini 2016] Marchesini, S., et al., “SHARP: a distributed GPU-based ptychographic solver,” J. Appl. Cryst. 49, 1245-1252 (2016).CrossRefGoogle Scholar
[Maréchal 1947a] Maréchal, A., “ É Etude des effets combinés de la diffraction et des aberrations géométriques sur l'image d'un point lumineux,” Revue d'Optique Théoretique et Instrumentale 26, 257-277 (1947).Google Scholar
[Maréchal 1947b] Maréchal, A., “Study of diffraction patterns in presence of various aberrations,” J. Opt. Soc. Am. 37, 982 (1947).Google Scholar
[Maretzke 2016] Maretzke, S., et al., “Regularized Newton methods for x-ray phase contrast and general imaging problems,” Opt. Express 24, 6490-6506 (2016).CrossRefGoogle ScholarPubMed
[Maria 2004] Maria, S. F., et al., “Organic aerosol growth mechanisms and their climate-forcing implications,” Science 306, 1921-1924 (2004).CrossRefGoogle ScholarPubMed
[Marmorato 2011] Marmorato, P., et al., “Cellular distribution and degradation of cobalt ferrite nanoparticles in Balb/3T3 mouse fibroblasts,” Toxicol. Lett. 207, 128-136 (2011).CrossRefGoogle ScholarPubMed
[Marone 2012] Marone, F. and Stampanoni, M., “Regridding reconstruction algorithm for real-time tomographic imaging,” J. Synch. Rad. 19, 1029-1037 (2012).CrossRefGoogle ScholarPubMed
[Marschall 2017] Marschall, F., et al., “Systematic efficiency study of line-doubled zone plates,” Microelectron. Eng. 177, 25-29 (2017).CrossRefGoogle Scholar
[Marsi 1997] Marsi, M., et al., “ESCA microscopy at ELET-TRA - what it is like to perform spectromicroscopy experiments on a third generation synchrotron radiation source,” J. Electron Spect. Rel. Phenom. 84, 73-83 (1997).CrossRefGoogle Scholar
[Martin 1927] Martin, L. H., “The efficiency of K series emission by K ionised atoms,” Proc. Roy. Soc. Lon. A 115, 420-442 (1927).CrossRefGoogle Scholar
[Martin 2006] Martin, T. and Koch, A., “Recent developments in x-ray imaging with micrometer spatial resolution,” J. Synch. Rad. 13, 180-194 (2006).CrossRefGoogle ScholarPubMed
[Martínez-Criado 2006] Martínez-Criado, G., et al., “Scanning x-ray excited optical luminescence microscopy in GaN,” Appl. Phys. Lett. 89, 221913 (2006).CrossRefGoogle Scholar
[Martínez-Criado 2012] Martínez-Criado, G., et al., “Spatially resolved x-ray excited optical luminescence,” Nucl. Inst. Meth. Phys. Res. B 284, 36-39 (2012).CrossRefGoogle Scholar
[Martz 2012] Martz, D. H., et al., “High average brightness water window source for short-exposure cryomi-croscopy,” Opt. Lett. 37, 4425-4427 (2012).CrossRefGoogle Scholar
[Marvin 2012] Marvin, R. G., et al., “Fluxes in ‘free’ and total zinc are essential for progression of intraerythrocytic stages of Plasmodium falciparum,” Chem. Bio. 19, 731-741 (2012).CrossRefGoogle ScholarPubMed
[Maser 1992] Maser, J. and Schmahl, G., “Coupled wave description of the diffraction by zone plates with high aspect ratios,” Optics Comm. 89, 355-362 (1992).CrossRefGoogle Scholar
[Maser 1998] Maser, J., et al., “Development of a cryo scanning x-ray microscope at the NSLS,” in [Thieme 1998b], I-35-44.CrossRefGoogle Scholar
[Maser 2000] Maser, J., et al., “Soft x-ray microscopy with a cryo STXM: I. Instrumentation, imaging, and spectroscopy,” J. Microsc. 197, 68-79 (2000).CrossRefGoogle Scholar
[Maser 2004] Maser, J., et al., “Multilayer Laue lenses as high-resolution x-ray optics,” Proc. SPIE 5539, 185-194 (2004).Google Scholar
[Maser 2016] Maser, J., et al., “HYBRID simulations of diffraction-limited focusing with Kirkpatrick-Baez mirrors for a next-generation in situ hard x-ray nanoprobe,” Metallurg. Mater. Trans. A 47A, 5715-5721 (2016).Google Scholar
[Mathon 2001] Mathon, J. and Umerski, A., “Theory of tunneling magnetoresistance,” in Moréan-Léopez, J. L., ed., Physics of Low Dimensional Systems, 363-372, Kluwer Academic/Plenum Publishers, (2001).Google Scholar
[Matruglio 2018] Matruglio, A., et al., “Graphene liquid cells for multi-technique analysis of biological cells in water environment,” J. Instrumentation 13, C05016 (2018).CrossRefGoogle Scholar
[Matsuyama 2006] Matsuyama, S., et al., “Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics,” Rev. Sci. Inst. 77, 103102 (2006).CrossRefGoogle Scholar
[Matsuyama 2010] Matsuyama, S., et al., “Elemental mapping of frozen-hydrated cells with cryo-scanning x-ray fluorescence microscopy,” X-ray Spect. 39, 260-266 (2010).CrossRefGoogle Scholar
[Matsuyama 2014] Matsuyama, S., et al., “Development of achromatic full-field hard x-ray microscopy and its application to x-ray absorption near edge structure spectromi-croscopy,” Proc. SPIE 9207, 92070Q (2014).Google Scholar
[Matsuyama 2017] Matsuyama, S., et al., “50-nm-resolution full-field x-ray microscope without chromatic aberration using total-reflection imaging mirrors,” Sci. Rep. 7, 46358 (2017).CrossRefGoogle ScholarPubMed
[Matsuyama 2019] Matsuyama, S., et al., “Full-field x-ray fluorescence microscope based on total-reflection advanced Kirkpatrick-Baez mirror optics,” Opt. Express 27, 18318-18328 (2019).CrossRefGoogle ScholarPubMed
[Matthews 1985] Matthews, D. L., et al., “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110-113 (1985).CrossRefGoogle ScholarPubMed
[Mattson 1966] Mattson, R. A. and Ehlert, R. C., “The application of a soft x-ray spectrometer to study the oxygen and fluorine emission lines from oxides and fluorides,” in [Mallett 1966], 471-486.Google Scholar
[Maxwell 1861] Maxwell, J. C., “III. On physical lines of force. Part III. - the theory of molecular vortices applied to statical electricity,” Phil. Mag. 23, 12-24 (1861).Google Scholar
[Maxwell 1954] Maxwell, C. R., et al., “The effect of ionizing radiation on amino acids: I. The effect of x-rays on aqueous solutions of glycine,” Radiat. Res. 1, 530-17 (1954).CrossRefGoogle ScholarPubMed
[May 2017] May, B. M., et al., “Nanoscale detection of intermediate solid solutions in equilibrated LixFePO4 mi-crocrystals,” Nano Lett. 17, 7364-7371 (2017).CrossRefGoogle Scholar
[Mayo 2003] Mayo, S. C., et al., “X-ray phase-contrast microscopy and microtomography,” Opt. Express 11, 2289-2302 (2003).CrossRefGoogle ScholarPubMed
[Mazziotta 2008] Mazziotta, M. N., “Electron-hole pair creation energy and Fano factor temperature dependence in silicon,” Nucl. Inst. Meth. Phys. Res. A 584, 436-439 (2008).CrossRefGoogle Scholar
[McBride 1978] McBride, J. P., et al., “Radiological impact of airborne effluents of coal and nuclear plants,” Science 202, 1045-1050 (1978).CrossRefGoogle ScholarPubMed
[McCallum 1992] McCallum, B. C. and Rodenburg, J. M., “Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration,” Ultra-microscopy 45, 371-380 (1992).Google Scholar
[McCallum 1995] McCallum, B. C., et al., “Complex image reconstruction of weak specimens from a three-sector detector in the STEM,” Optik 101, 53-62 (1995).Google Scholar
[McCallum 1996] McCallum, B. C., et al., “Complex image reconstruction of weak specimens from a three-sector detector: correction,” Optik 103, 131-132 (1996).Google Scholar
[McCullough 1975] McCullough, E. C., “Photon attenuation in computed tomography,” Med. Phys. 2, 307-320 (1975).CrossRefGoogle ScholarPubMed
[McDermott 2012] McDermott, G., et al., “Visualizing cell architecture and molecular location using soft x-ray tomography and correlated cryo-light microscopy,” Ann. Rev. Phys. Chem. 63, 225-239 (2012).CrossRefGoogle ScholarPubMed
[Mcdonald 2015] Mcdonald, S. A., et al., “Non-destructive mapping of grain orientations in 3D by laboratory x-ray microscopy,” Sci. Rep. 5, 14665 (2015).CrossRefGoogle ScholarPubMed
[McDowall 1983] McDowall, A. W., et al., “Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples,” J. Microsc. 131, 1-9 (1983).CrossRefGoogle ScholarPubMed
[McEwen 1995] McEwen, B. F., et al., “The relevance of dose-fractionation in tomography of radiation-sensitive specimens,” Ultramicroscopy 60, 357-373 (1995).CrossRefGoogle ScholarPubMed
[McKay 1996] McKay, D. S., et al., “Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001,” Science 273, 924-930 (1996).CrossRefGoogle ScholarPubMed
[McKechnie 1972] McKechnie, T. S., “The effect of condenser obstruction on the two-point resolution of a microscope,” Optica Acta 19, 729-737 (1972).CrossRefGoogle Scholar
[McMaster 1969] McMaster, W. H., et al., “Compilation of x-ray cross sections,” Technical Report UCRL-50174, Lawrence Radiation Laboratory, Livermore, California, (1969).Google Scholar
[McMaster 1970] McMaster, W. H., et al., “Compilation of x-ray cross sections,” Nuclear Data Tables A 8, 443-444 (1970).Google Scholar
[McNeill 2007] McNeill, C. R., et al., “X-ray microscopy of photovoltaic polyfluorene blends: relating nanomorphology to device performance,” Macromolecules 40, 3263-3270 (2007).CrossRefGoogle Scholar
[McNulty 1992] McNulty, I., et al., “High-resolution imaging by Fourier transform x-ray holography,” Science 256, 1009-1012 (1992).CrossRefGoogle ScholarPubMed
[McNulty 2011] McNulty, I., “Preface,” AIP Conf. Proc. 1365, 1-2 (2011).Google Scholar
[McSween Jr. 1985] McSween, H. Y. Jr., “SNC meteorites: clues to Martian petrologic evolution?,” Rev. Geophys. 23, 391-26 (1985).CrossRefGoogle Scholar
[Medalia 2002] Medalia, O., et al., “Macromolecular architecture in eukariotic cells visualized by cryoelectron tomography,” Science 298, 1209-1213 (2002).CrossRefGoogle Scholar
[Medenwaldt 1995] Medenwaldt, R. and Hettwer, M., “Production of ultra thin silicon foils,” J. X-ray Sci. Tech. 5, 202-206 (1995).CrossRefGoogle ScholarPubMed
[Meidinger 2006] Meidinger, N., et al., “pnCCD for photon detection from near-infrared to X-rays,” Nucl. Inst. Meth. Phys. Res. A 565, 251-257 (2006).CrossRefGoogle Scholar
[Meinel 1986] Meinel, E. S., “Origins of linear and nonlinear recursive restoration algorithms,” J. Opt. Soc. Am. A 3, 787-799 (1986).Google Scholar
[Meirer 2013] Meirer, F., et al., “Full-field XANES analysis of Roman ceramics to estimate firing conditions - a novel probe to study hierarchical heterogeneous materials,” J. Anal. Atomic Spectr. 28, 1870 (2013).CrossRefGoogle Scholar
[Meirer 2015] Meirer, F., et al., “Life and death of a single catalytic cracking particle,” Sci. Adv. 1, e1400199 (2015).CrossRefGoogle ScholarPubMed
[Meirer 2018] Meirer, F. and Weckhuysen, B. M., “Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation,” Nature Rev. Mater. 3, 324-340 (2018).Google Scholar
[Meisel 1989] Meisel, A., et al., X-ray Spectra and Chemical Binding, Springer-Verag (1989).CrossRefGoogle Scholar
[Melchior 2017] Melchior, L. and Salditt, T., “Finite difference methods for stationary and time-dependent x-ray propagation,” Opt. Express 25, 32090-32109 (2017).CrossRefGoogle ScholarPubMed
[Menzel 2010] Menzel, A., et al., “Scanning transmission x-ray microscopy with a fast framing pixel detector,” Ul-tramicroscopy 110, 1143-1147 (2010).Google ScholarPubMed
[Métrich 2002] Métrich, N., et al., “Presence of sulfite (SIV) in arc magmas: implications for volcanic sulfur emissions,” Geophys. Res. Lett. 29, 33 (2002).CrossRefGoogle Scholar
[Meyer-Ilse 1993] Meyer-Ilse, W., et al., “Thinned backilluminated CCD for x-ray microscopy,” Proc. SPIE 1900, 241-245 (1993).Google Scholar
[Meyer-Ilse 2000] Meyer-Ilse, W., et al., eds., X-ray Microscopy: Proceedings of the Sixth International Conference, American Institute of Physics (2000).Google Scholar
[Meyer-Ilse 2001] Meyer-Ilse, W., et al., “High resolution protein localization using soft x-ray microscopy,” J. Mi-crosc. 201, 395-403 (2001).Google ScholarPubMed
[Miao 1998] Miao, J., et al., “Phase retrieval from the magnitude of the Fourier transforms of non-periodic objects,” J. Opt. Soc. Am. A 15, 1662-1669 (1998).CrossRefGoogle Scholar
[Miao 1999] Miao, J., et al., “An extension of the methods of x-ray crystallography to allow imaging of micron-size non-crystalline specimens,” Nature 400, 342-344 (1999).CrossRefGoogle Scholar
[Miao 2002] Miao, J., et al., “High resolution 3D x-ray diffraction microscopy,” Phys. Rev. Lett. 89, 088303 (2002).CrossRefGoogle ScholarPubMed
[Miao 2003] Miao, J., et al., “Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction,” Proc. Nat. Acad. Sci. 100, 110-112 (2003).CrossRefGoogle ScholarPubMed
[Miao 2005] Miao, J., et al., “Equally sloped tomography with oversampling reconstruction,” Phys. Rev. B 72, 052103 (2005).CrossRefGoogle Scholar
[Michette 1986] Michette, A. G., Optical Systems for Soft X Rays, Plenum (1986).CrossRefGoogle Scholar
[Michette 1988] Michette, A. G., et al., “The potential of laser-plasma sources in scanning x-ray microscopy,” in [Sayre 1988].CrossRefGoogle Scholar
[Michette 1991] Michette, A., “No x-ray lens,” Nature 353, 510 (1991).CrossRefGoogle Scholar
[Michette 1992] Michette, A. G., et al., eds., X-ray Microscopy III, volume 67 of Springer Series in Optical Sciences, Springer-Verlag (1992).Google Scholar
[Michette 1993] Michette, A. G. and Buckley, C. J., eds., X-ray Science and Technology, Institute of Physics (1993).Google Scholar
[Michette 1994] Michette, A., et al., “Laser plasma sources for x-ray microscopy,” in [Aristov 1994], 354-363.Google Scholar
[Michette 1997] Michette, A. G., “Projected advances in laboratory soft x-ray systems and their applications,” J. X-ray Sci. Tech. 7, 98-116 (1997).CrossRefGoogle ScholarPubMed
[Michette 2001] Michette, A. G., et al., “Zone plate achromatic doublets,” Proc. SPIE 4145, 303-310 (2001).Google Scholar
[Mikaberidze 2008] Mikaberidze, A., et al., “Energy absorption of xenon clusters in helium nanodroplets under strong laser pulses,” Phys. Rev. A 77, 041201 (2008).CrossRefGoogle Scholar
[Miller 1971] Miller, E. R., et al., “An infinite number of laminagrams from a finite number of radiographs,” Radiology 98, 249-255 (1971).CrossRefGoogle ScholarPubMed
[Mimura 2007] Mimura, H., et al., “Efficient focusing of hard x rays to 25 nm by a total reflection mirror,” Appl. Phys. Lett. 90, 051903 (2007).CrossRefGoogle Scholar
[Mimura 2010] Mimura, H., et al., “Breaking the 10 nm barrier in hard-x-ray focusing,” Nature Phys. 6, 122-125 (2010).Google Scholar
[Minkevich 2007] Minkevich, A. A., et al., “Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm,” Phys. Rev. B 76, 104106 (2007).CrossRefGoogle Scholar
[Minkevich 2008] Minkevich, A. A., et al., “Applicability of an iterative inversion algorithm to the diffraction patterns from inhomogeneously strained crystals,” Phys. Rev. B 78, 174110 (2008).CrossRefGoogle Scholar
[Minkevich 2014] Minkevich, A. A., et al., “Retrieval of the atomic displacements in the crystal from the coherent x-ray diffraction pattern,” J. Synch. Rad. 21, 774-783 (2014).CrossRefGoogle ScholarPubMed
[Mino 2018] Mino, L., et al., “Materials characterization by synchrotron x-ray microprobes and nanoprobes,” Rev. Mod. Phys. 90, 025007 (2018).CrossRefGoogle Scholar
[Miqueles 2010] Miqueles, E. X. and De Pierro, A. R., “Exact analytic reconstruction in x-ray fluorescence CT and approximated versions,” Phys. Med. Bio. 55, 1007-1024 (2010).CrossRefGoogle ScholarPubMed
[Miqueles 2011] Miqueles, E. X. and De Pierro, A. R., “Iterative reconstruction in x-ray fluorescence tomography based on radon inversion,” IEEE Trans. Med. Imaging 30, 438-450 (2011).CrossRefGoogle ScholarPubMed
[Mishima 1984] Mishima, O., et al., “‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids,” Nature 310, 393-395 (1984).CrossRefGoogle Scholar
[Mishima 1994] Mishima, O., “Reversible first-order transition between two H2O amorphs at ~0.2 GPa and ~135 K,” J. Chem. Phys. 100, 5910-5912 (1994).CrossRefGoogle Scholar
[Mishima 1998] Mishima, O. and Stanley, H. E., “The relationship between liquid, supercooled and glassy water,” Nature 396, 329-335 (1998).CrossRefGoogle Scholar
[Mitchell 2002] Mitchell, G. E., et al., “Quantitative characterization of microscopic variations in the cross-link density of gels,” Macromolecules 35, 1336-1341 (2002).CrossRefGoogle Scholar
[Mittlefehldt 1994] Mittlefehldt, D. W., “ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan,” Meteoritics 29, 214-221 (1994).CrossRefGoogle Scholar
[Mobella 2015] Mobella, V., et al., “Revealing letters in rolled Herculaneum papyri by x-ray phase-contrast imaging,” Nature Comm. 6, 5895 (2015).Google Scholar
[Moewes 1996] Moewes, A., et al., “Soft x-ray stimulated luminescence microscopy and spectroscopy on Gd2O2S:Pr3+ and (Y,Gd)2O3:Eu3+ ceramics,” Nucl. Inst. Meth. Phys. Res. A 373, 299-304 (1996).CrossRefGoogle Scholar
[Mohacsi 2014] Mohacsi, I., et al., “High-efficiency zone-plate optics for multi-keV x-ray focusing,” J. Synch. Rad. 21, 479-501 (2014).CrossRefGoogle ScholarPubMed
[Mohacsi 2015] Mohacsi, I., et al., “High resolution double-sided diffractive optics for hard x-ray microscopy,” Opt. Express 23, 776-786 (2015).CrossRefGoogle ScholarPubMed
[Mohacsi 2017] Mohacsi, I., et al., “Interlaced zone plate optics for hard x-ray imaging in the 10 nm range,” Sci. Rep. 7, 43624 (2017).CrossRefGoogle Scholar
[Mohan 2015] Mohan, K. A., et al., “TIMBIR: a method for time-space reconstruction from interlaced views,” IEEE Trans. Comput. Imaging 1, 96-111 (2015).Google Scholar
[Mokso 2007] Mokso, R., et al., “Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics,” Appl. Phys. Lett. 90, 144104 (2007).CrossRefGoogle Scholar
[Mokso 2017] Mokso, R., et al., “GigaFRoST: the gigabit fast readout system for tomography,” J. Synch. Rad. 24, 1250-1259 (2017).CrossRefGoogle ScholarPubMed
[Moldovan 1999] Moldovan, N. A., “Deformation and stress in PMMA during hard x-ray exposure for deep lithography,” Proc. SPIE 3875, 155-163 (1999).Google Scholar
[Mole 1984] Mole, R. H., “The LD50 for uniform low LET irradiation of man,” British J. Radiology 57, 355-369 (1984).CrossRefGoogle Scholar
[Momose 1996] Momose, A., et al., “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nature Medicine 2, 473-475 (1996).CrossRefGoogle ScholarPubMed
[Momose 2005] Momose, A., “Recent advances in X-ray phase imaging,” Japanese J. Appl. Phys. 44, 6355-6367 (2005).CrossRefGoogle Scholar
[Monson 2006] Monson, R. R., et al., Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2 National Academies Press (2006).Google Scholar
[Monteiro 2009] Monteiro, P. J. M., et al., “Characterizing the nano and micro structure of concrete to improve its durability,” Cement Concrete Compos. 31, 577-584 (2009).CrossRefGoogle Scholar
[Montel 1957] Montel, M., “The x-ray microscope with catamegonic roof-shaped objective,” in Cosslett, V. E., et al., eds., X-ray Microscopy and Microradiography, 177-185, Academic Press, (1957).Google Scholar
[Moor 1971] Moor, H., “Recent progress in the freezeetching technique,” Phil. Trans. Roy. Soc. Lon. B 261, 121-131 (1971).Google Scholar
[Moor 1980] Moor, H., et al., “The influence of high-pressure freezing on mammalian nerve-tissue,” Cell Tiss. Res. 209, 201-216 (1980).CrossRefGoogle ScholarPubMed
[Moor 1987] Moor, H., “Theory and practice of high pressure freezing,” in [Steinbrecht 1987], 175-191.Google Scholar
[Moore 1965] Moore, G. E., “Cramming more components onto integrated circuits,” Electronics 38, 114-117 (1965).Google Scholar
[Moore 2011] Moore, K. L., et al., “Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants,” Anal. Bioanal. Chem. 402, 3263-3273 (2011).Google ScholarPubMed
[Moraes 2014] Moraes, I., et al., “Membrane protein structure determination - the next generation,” Biochimica et Biophysica Acta Membranes 1838, 78-87 (2014).Google ScholarPubMed
[Morawe 2015] Morawe, C., et al., “Graded multilayers for figured Kirkpatrick-Baez mirrors on the new ESRF end station ID16A,” Proc. SPIE 9588, 958803 (2015).Google Scholar
[Moreton 1974] Moreton, R. B., et al., “Preparation of frozen hydrated tissue sections for x-ray microanalysis in the scanning electron microscope,” Nature 247, 113-115 (1974).CrossRefGoogle ScholarPubMed
[Morgan 2012] Morgan, K. S., et al., “X-ray phase imaging with a paper analyzer,” Appl. Phys. Lett. 100, 124102 (2012).CrossRefGoogle Scholar
[Mori 1987] Mori, Y., et al., “Elastic emission machining,” Precision Engineering 9, 123-128 (1987).CrossRefGoogle Scholar
[Moritomo 2015] Moritomo, Y., et al., “Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell,” Sci. Rep. 5, 9483 (2015).CrossRefGoogle ScholarPubMed
[Morrison 1992a] Morrison, G., “Phase contrast and dark-field imaging in x-ray microscopy,” Proc. SPIE 1741, 186-193 (1992).Google Scholar
[Morrison 1992b] Morrison, G. R., et al., “X-ray imaging of aggregation in silica and zeolitic precursors,” Proc. SPIE 1741, 312-315 (1992).Google Scholar
[Moseley 1913] Moseley, H. G. J., “The high-frequency spectra of the elements,” Philosiphical Magazine 26, 1024-1034 (1913).Google Scholar
[Moseley 1984] Moseley, S. H., et al., “Thermal detectors as x-ray spectrometers,” J. Appl. Phys. 56, 1257-1262 (1984).CrossRefGoogle Scholar
[Mothersill 2001] Mothersill, C. and Seymour, C., “Radiation-induced bystander effects: past history and future directions,” Radiat. Res. 155, 759-767 (2001).CrossRefGoogle ScholarPubMed
[Motz 1951] Motz, H., “Applications of the radiation from fast electron beams,” J. Appl. Phys. 22, 527-535 (1951).Google Scholar
[Motz 1953] Motz, H., et al., “Experiments on radiation by fast electron beams,” J. Appl. Phys. 24, 826-833 (1953).CrossRefGoogle Scholar
[Mould 1993] Mould, R. F., A Century of X-Rays and Radioactivity in Medicine, Institute of Physics (1993).Google Scholar
[Mozumder 1999] Mozumder, A., Fundamentals of Radiation Chemistry, Academic Press (1999).Google Scholar
[Mu 2006] Mu, Z. and Liu, Y.-H., “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Med. Imaging 25, 701-711 (2006).Google ScholarPubMed
[Mueller 1977] Mueller, R. K. and Jorna, S., “Intensity requirements in x-ray holography at 1 Å,” App. Opt. 16, 525-526 (1977).Google ScholarPubMed
[Muench 2019] Muench, S. P., et al., “The expanding toolkit for structural biology: synchrotrons, x-ray lasers and cry-oEM,” IUCrJ 6, 1-11 (2019).CrossRefGoogle Scholar
[Mukoyama 1994] Mukoyama, T. and Ito, Y., “Multielectron transitions in x-ray absorption and inner-shell ionization phenomena,” Nucl. Inst. Meth. Phys. Res. B 87, 26-33 (1994).CrossRefGoogle Scholar
[Müller 1972] Müller, R. O., Spectrochemical Analysis by X-ray Fluorescence, Plenum Press (1972).CrossRefGoogle Scholar
[Mulvey 1994] Mulvey, T., “Vernon Ellis Cosslett. 16 June 1908-21 November 1990,” Biogr. Mems. Fell. Roy. Soc. 40, 63-84 (1994).Google Scholar
[Mulware 2015] Mulware, S. J., “The review of nuclear microscopy techniques: an approach for nondestructive trace elemental analysis and mapping of biological materials,” J. Biophys. 2015, 1-7 (2015).CrossRefGoogle ScholarPubMed
[Munro 2019] Munro, P. R. T., “Rigorous multi-slice wave optical simulation of x-ray propagation in inhomogeneous space,” J. Opt. Soc. Am. A 36, 1197-1208 (2019).CrossRefGoogle ScholarPubMed
[Murakami 1993] Murakami, K., et al., “Schwarzschild microscope for carbon Ka radiation,” App. Opt. 32, 7057-7061 (1993).Google Scholar
[Murray 2005] Murray, C. E., et al., “High-resolution strain mapping in heteroepitaxial thin-film features,” J. Appl. Phys. 98, 013504 (2005).CrossRefGoogle Scholar
[Murray 2009] Murray, C. E., et al., “Strain measured in a silicon-on-insulator, complementary metal-oxide-semiconductor device channel induced by embedded silicon-carbon source/drain regions,” Appl. Phys. Lett. 94, 063502 (2009).CrossRefGoogle Scholar
[Myllys 2016] Myllys, M., et al., “Herpes simplex virus 1 induces egress channels through marginalized host chromatin,” Sci. Rep. 6, 28844 (2016).CrossRefGoogle ScholarPubMed
[Nagaosa 2013] Nagaosa, N. and Tokura, Y., “Topological properties and dynamics of magnetic skyrmions,” Nature Nanotech. 8, 899-911 (2013).CrossRefGoogle ScholarPubMed
[Namatsu 1998] Namatsu, H., et al., “Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations,” Microelectron. Eng. 41/42, 331-334 (1998).CrossRefGoogle Scholar
[Namioka 1959] Namioka, T., “Theory of the concave grating. I,” J. Opt. Soc. Am. 49, 446-460 (1959).CrossRefGoogle Scholar
[NASA 1993] NASA, “NASA inventor of the year: Richard B. Hoover,” NASA Tech Briefs 17, 14-15 (1993).
[Nashed 2014] Nashed, Y. S., et al., “Parallel ptychographic reconstruction,” Opt. Express 22, 32082-32097 (2014).CrossRefGoogle ScholarPubMed
[Nashed 2017] Nashed, Y. S. G., et al., “Distributed automatic differentiation for ptychography,” Procedia Computer Science 108, 404-414 (2017).CrossRefGoogle Scholar
[Natarajan 1995] Natarajan, B. K., “Sparse approximate solutions to linear systems,” SIAM J. Comput. 24, 227-234 (1995).CrossRefGoogle Scholar
[Nave 2005] Nave, C. and Hill, M. A., “Will reduced radiation damage occur with very small crystals?,” J. Synch. Rad. 12, 299-303 (2005).CrossRefGoogle ScholarPubMed
[Nazaretski 2013] Nazaretski, E., et al., “Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope,” Rev. Sci. Inst. 84, 033701 (2013).CrossRefGoogle ScholarPubMed
[Nazaretski 2016] Nazaretski, E., et al., “Development and characterization of monolithic multilayer Laue lens nanofocusing optics,” Appl. Phys. Lett. 108, 261102 (2016).CrossRefGoogle Scholar
[Nazmov 2004] Nazmov, V., et al., “Kinoform x-ray lens creation in polymer materials by deep x-ray lithography,” Nucl. Inst. Meth. Phys. Res. B 217, 409-416 (2004).CrossRefGoogle Scholar
[Nazmov 2005] Nazmov, V., et al., “LIGA fabrication of x-ray nickel lenses,” Microsys. Technol. 11, 292-297 (2005).CrossRefGoogle Scholar
[Nazmov 2007] Nazmov, V., et al., “Crossed planar x-ray lenses made from nickel for x-ray micro focusing and imaging applications,” Nucl. Inst. Meth. Phys. Res. A 582, 120-122 (2007).CrossRefGoogle Scholar
[Nelson 2010] Nelson, J., et al., “High-resolution x-ray diffraction microscopy of specifically labeled yeast cells,” Proc. Nat. Acad. Sci. 107, 7235-7239 (2010).CrossRefGoogle ScholarPubMed
[Nelson 2013] Nelson, J., et al., “Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries,” Proc. SPIE 8851, 88510B (2013).Google Scholar
[Neuhäusler 2000] Neuhäusler, U., et al., “A specimen chamber for soft x-ray spectromicroscopy on aqueous and liquid samples,” J. Synch. Rad. 7, 110-112 (2000).CrossRefGoogle ScholarPubMed
[Neutze 2000] Neutze, R., et al., “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature 406, 752-757 (2000).CrossRefGoogle ScholarPubMed
[Newberry 1956] Newberry, S. P. and Summers, S. E., “The General Electric shadow x-ray microscope,” in Ross, R., ed., Proceedings of the Third International Conference on Electron Microscopy, Royal Microscopical Society, 305-307 (1956).Google Scholar
[Newberry 1987] Newberry, S. P., “History of x-ray microscopy,” in [Cheng 1987], 346-360.Google Scholar
[Newton 2009] Newton, M. C., et al., “Three-dimensional imaging of strain in a single ZnO nanorod,” Nature Mater. 9, 120-124 (2009).Google Scholar
[Ng 1990] Ng, W., et al., “The photoemission spectromicro-scope multiple-application x-ray imaging undulator microscope (MAXIMUM),” J. Vac. Sci. Tech. A 8, 2563-2565 (1990).CrossRefGoogle Scholar
[Ng 2006] Ng, W., et al., “Photoemission spectromicroscopy with MAXIMUM at Wisconsin,” Phys. Scripta 41, 758-760 (2006).Google Scholar
[Niemann 1974] Niemann, B., et al., “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Optics Comm. 12, 160-163 (1974).CrossRefGoogle Scholar
[Niemann 1976] Niemann, B., et al., “X-ray microscopy with synchrotron radiation,” App. Opt. 15, 1883-1884 (1976).Google ScholarPubMed
[Niemann 1980] Niemann, B., “Detective quantum efficiency of some film materials in the soft x-ray region,” Ann. NY Acad. Sci. 342, 230-234 (1980).CrossRefGoogle Scholar
[Niemann 1983] Niemann, B., et al., “The Göttingen x-ray microscopes,” Nucl. Inst. Meth. 208, 367-372 (1983).Google Scholar
[Niemann 1990] Niemann, B., et al., “An x-ray microscope with a plasma x-ray source,” Optik 84, 35-36 (1990).Google Scholar
[Nishimura 2016] Nishimura, R., et al., “Development of an x-ray imaging system with SOI pixel detectors,” Nucl. Inst. Meth. Phys. Res. A 831, 49-54 (2016).CrossRefGoogle Scholar
[Nishino 2009] Nishino, Y., et al., “Three-dimensional visualization of a human chromosome using coherent x-ray diffraction,” Phys. Rev. Lett. 102, 018101 (2009).CrossRefGoogle ScholarPubMed
[Noble 2000] Noble, C. A. and Prather, K. A., “Real-time single particle mass spectrometry: A historical review of a quarter century of the chemical analysis of aerosols,” Mass Spectrom. Rev. 19, 248-274 (2000).3.0.CO;2-I>CrossRefGoogle ScholarPubMed
[Nocedal 2006] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer, second edition (2006).Google Scholar
[Nöhammer 2003] Nöhammer, B., et al., “Diamond planar refractive lenses for third- and fourth-generation x-ray sources,” J. Synch. Rad. 10, 168-171 (2003).CrossRefGoogle ScholarPubMed
[Nordgren 1989] Nordgren, J., et al., “Soft x-ray emission spectroscopy using monochromatized synchrotron radiation,” Rev. Sci. Inst. 60, 1690-1696 (1989).CrossRefGoogle Scholar
[Norfolk 2010] Norfolk, A. W. and Grace, E. J., “Reconstruction of optical fields with the quasi-discrete Hankel transform,” Opt. Express 18, 10551-10556 (2010).CrossRefGoogle ScholarPubMed
[Nussenzveig 1972] Nussenzveig, H. M., Causality and Dispersion Relations, Academic Press (1972).Google Scholar
[Nuttall 1981] Nuttall, A., “Some windows with very good sidelobe behavior,” IEEE Trans. Acous. Speech Sig. Proc. 29, 84-91 (1981).CrossRefGoogle Scholar
[Nuyts 1999] Nuyts, J., et al., “Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms,” IEEE Trans. Med. Imaging 18, 393-403 (1999).CrossRefGoogle ScholarPubMed
[O'Brien 2015] O'Brien, R. E., et al., “Chemical imaging of ambient aerosol particles: observational constraints on mixing state parameterization,” J. Geophys. Res. Atmos. 120, 9591-9605 (2015).CrossRefGoogle Scholar
[Odstrčil 2018] Odstrčil, M., et al., “Arbitrary-path fly-scan ptychography,” Opt. Express 26, 12585-12593 (2018).CrossRefGoogle ScholarPubMed
[Odstrčil 2016] Odstrčil, M., et al., “Ptychographic coherent diffractive imaging with orthogonal probe relaxation,” Opt. Express 24, 8360-8369 (2016).Google ScholarPubMed
[Odstrčil 2018] Odstrčil, M., et al., “Iterative least-squares solver for generalized maximum-likelihood ptychogra-phy,” Opt. Express 26, 3108-3123 (2018).CrossRefGoogle Scholar
[Oehrlein 1990] Oehrlein, G. S., “Reactive ion etching,” in Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, chapter 8, 196-232, Noyes Publications, (1990).Google Scholar
[O'Hanlon 2003] O'Hanlon, J. F., A User's Guide to Vacuum Technology, Wiley, third edition (2003).CrossRefGoogle Scholar
[Oikonomou 2017] Oikonomou, C. M. and Jensen, G. J., “Cellular electron cryotomography: toward structural biology in situ,” Ann. Rev. Biochem. 86, 873-896 (2017).CrossRefGoogle ScholarPubMed
[Okamoto 2017] Okamoto, K., et al., “Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy,” Sci. Rep. 7, 13291 (2017).CrossRefGoogle ScholarPubMed
[Olsen 2009] Olsen, U. L., et al., “Structured scintillators for x-ray imaging with micrometre resolution,” Nucl. Inst. Meth. Phys. Res. A 607, 141-144 (2009).CrossRefGoogle Scholar
[Onuki 1992] Onuki, T., et al., “Fabrication of Wolter type I mirror for soft x-ray,” Proc. SPIE 1720, 258-263 (1992).Google Scholar
[Onuki 2003] Onuki, H. and Elleaume, P., eds., Undula-tors, Wigglers and Their Applications, Taylor and Francis (2003).CrossRefGoogle Scholar
[Ordavo 2011] Ordavo, I., et al., “A new pnCCD-based color x-ray camera for fast spatial and energy-resolved measurements,” Nucl. Inst. Meth. Phys. Res. A 654, 250-257 (2011).CrossRefGoogle Scholar
[Oroguchi 2015] Oroguchi, T., et al., “Cryogenic coherent x-ray diffraction imaging for biological non-crystalline particles using the KOTOBUKI-1 diffraction apparatus at SACLA,” J. Phys. B 48, 184003 (2015).CrossRefGoogle Scholar
[Ortega 2007] Ortega, R., et al., “Iron storage within dopamine neurovesicles revealed by chemical nano-imaging,” PLoS ONE 2, e925 (2007).CrossRefGoogle ScholarPubMed
[Osanna 2000] Osanna, A. and Jacobsen, C., “Principle component analysis for soft x-ray spectromicroscopy,” in [Meyer-Ilse 2000], 350-357.Google Scholar
[Osterhoff 2017] Osterhoff, M., et al., “Aberrations in compound refractive lens systems: analytical and numerical calculations,” Proc. SPIE 10388, 103880L (2017).Google Scholar
[O'Sullivan 1985] O'Sullivan, J. D., “A fast sinc function gridding algorithm for Fourier inversion in computer tomography,” IEEE Trans. Med. Imaging 4, 200-207 (1985).CrossRefGoogle ScholarPubMed
[Otón 2016] Otón, J., et al., “Characterization of transfer function, resolution and depth of field of a soft x-ray microscope applied to tomography enhancement by Wiener deconvolution,” Biomed. Opt. Express 7, 5092-5103 (2016).CrossRefGoogle ScholarPubMed
[O'Toole 1993] O'Toole, E., et al., “High voltage cryomi-croscopy of human blood platelets,” J. Struct. Bio. 110, 55-66 (1993).CrossRefGoogle ScholarPubMed
[Otsu 2007] Otsu, N., “A threshold selection method from gray-level histograms,” IEEE Trans. Sys. Man Cybernet. 9, 62-66 (2007).Google Scholar
[Owen 2014] Owen, R. L., et al., “Exploiting fast detectors to enter a new dimension in room-temperature crystallography,” Acta Cryst. D 70, 1248-1256 (2014).CrossRefGoogle Scholar
[Ozasa 2012] Ozasa, K., et al., “Studies of the mortality of atomic bomb survivors, report 14, 1950 - 2003: an overview of cancer and noncancer diseases,” Radiat. Res. 177, 229-243 (2012).CrossRefGoogle ScholarPubMed
[Öztürk 2018] Öztürk, H., et al., “Multi-slice ptychography with large numerical aperture multilayer Laue lenses,” Optica 5, 601-607 (2018).CrossRefGoogle Scholar
[Paganin 2002] Paganin, D., et al., “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33-40 (2002).CrossRefGoogle ScholarPubMed
[Palczewski 2006] Palczewski, K., “G protein-coupled receptor rhodopsin,” Ann. Rev. Biochem. 75, 743-767 (2006).CrossRefGoogle ScholarPubMed
[Palmer 1998] Palmer, K. F., et al., “Multiply subtractive Kramers-Kronig analysis of optical data,” App. Opt. 37, 2660 (1998).CrossRefGoogle ScholarPubMed
[Pan 1983] Pan, S. and Kak, A., “A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered-backpropagation,” IEEE Trans. Acous. Speech Sig. Proc. 31, 1262-1275 (1983).CrossRefGoogle Scholar
[Panetta 2016] Panetta, D., “Advances in x-ray detectors for clinical and preclinical computed tomography,” Nucl. Inst. Meth. Phys. Res. A 809, 2-12 (2016).CrossRefGoogle Scholar
[Papastefanou 2010] Papastefanou, C., “Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review,” J. Environ. Radioact. 101, 191-200 (2010).Google ScholarPubMed
[Park 2016] Park, J., et al., “High resolution imaging in the graphene liquid cell,” in [Ross 2016], 393-407.Google Scholar
[Parkinson 2008] Parkinson, D., et al., “Quantitative 3-D imaging of eukaryotic cells using soft x-ray tomography,” J. Struct. Bio. 162, 380-386 (2008).CrossRefGoogle ScholarPubMed
[Parkinson 2017] Parkinson, D. Y., et al., “Machine learning for micro-tomography,” Proc. SPIE 10391, 103910J (2017).Google Scholar
[Parratt 1954] Parratt, L. G., “Surface studies of solids by total reflection of x-rays,” Phys. Rev. 95, 359-369 (1954).CrossRefGoogle Scholar
[Parsafar 2015] Parsafar, A., et al., “Direct-conversion CMOS x-ray imager with 5.6 µm×6.25 µm pixels,” IEEE Electron Device Letters 36, 481-483 (2015).CrossRefGoogle Scholar
[Parsons 1978] Parsons, D. F., ed., Short Wavelength Microscopy, volume 306, Annals of the New York Academy of Sciences (1978).Google Scholar
[Parsons 1980] Parsons, D. F., ed., Ultrasoft X-ray Microscopy: Its Application to Biological and Physical Sciences, volume 342, Annals of the New York Academy of Sciences (1980).Google Scholar
[Partlow 2012] Partlow, M. J., et al., “Extreme-ultraviolet light source development to enable pre-production mask inspection,” J. Magn. Magn. Mater. 11, 021105 (2012).Google Scholar
[Pateras 2015] Pateras, A. “Three dimensional x-ray Bragg ptychography of an extended semiconductor heterostructure,” PhD thesis, Aix-Marseille Université, (2015).Google Scholar
[Patommel 2017] Patommel, J., et al., “Focusing hard x rays beyond the critical angle of total reflection by adiabatically focusing lenses,” Appl. Phys. Lett. 110, 101103 (2017).CrossRefGoogle Scholar
[Pattee 1953] Pattee, H. H. Jr., “The scanning x-ray microscope,” J. Opt. Soc. Am. 43, 61-62 (1953).CrossRefGoogle ScholarPubMed
[Pattee 1963] Pattee, Jr., H. H., et al., eds., X-ray Optics and X-ray Microanalysis, Academic Press (1963) Stanford, 1962.Google Scholar
[Patterson 1934a] Patterson, A. L., “A direct method for the determination of the components of interatomic distances in crystals,” Zeitschrift für Kristallographie: Krystallge-ometrie, Kristallphysik, Kristallchemie 90, 1-26 (1934).Google Scholar
[Patterson 1934b] Patterson, A. L., “A Fourier series method for the determination of the components of interatomic distances in crystals,” Phys. Rev. 46, 372-376 (1934).CrossRefGoogle Scholar
[Pauli 1927] Pauli, W. Jr., “Zur Quantenmechanik des mag-netischen Elektrons,” Zeitschrift für Physik A 43, 601-623 (1927).Google Scholar
[Paunesku 2006] Paunesku, T., et al., “X-ray fluorescence microprobe imaging in biology and medicine,” J. Cell. Biochem. 99, 1489-1502 (2006).CrossRefGoogle ScholarPubMed
[Pawlak 1987] Pawlak, J., et al., “A simple procedure for the fabrication of Si3N4 windows,” in [Cheng 1987], 336-345.Google Scholar
[Peatman 1997] Peatman, W. B., Gratings, Mirrors, and Slits: Beamline Design for Soft X-ray Synchrotron Radiation Sources, Gordon and Breach Science Publishers (1997).Google Scholar
[Pedersen 2015] Pedersen, E. B. L., et al., “Improving organic tandem solar cells based on water-processed nanoparticles by quantitative 3D nanoimaging,” Nanoscale 7, 13765-13774 (2015).CrossRefGoogle ScholarPubMed
[Peierls 1960] Peierls, R. E., “Wolfgang Ernst Pauli. 1900-1958,” Biogr. Mems. Fell. Roy. Soc. 5, 174-192 (1960).Google Scholar
[Pellegrini 2012] Pellegrini, C., “The history of x-ray free-electron lasers,” Eur. Phys. J. H 37, 659-708 (2012).CrossRefGoogle Scholar
[Pellegrini 2017] Pellegrini, C., “X-ray free-electron lasers: from dreams to reality,” Phys. Scripta T169, 014004 (2017).Google Scholar
[Pelt 2013] Pelt, D. M. and Batenburg, K. J., “Fast tomographic reconstruction from limited data using artificial neural networks,” IEEE Trans. Image Proc. 22, 5238-5251 (2013).CrossRefGoogle ScholarPubMed
[Pelz 2014] Pelz, P. M., et al., “On-the-fly scans for x-ray ptychography,” Appl. Phys. Lett. 105, 251101 (2014).CrossRefGoogle Scholar
[Peng 2002] Peng, K. Q., et al., “Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectro-chemistry,” Adv. Mater. 14, 1164-1167 (2002).3.0.CO;2-E>CrossRefGoogle Scholar
[Peng 2005] Peng, K., et al., “Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays,” Angew. Chem. Int. Ed. 44, 2737-2742 (2005).CrossRefGoogle ScholarPubMed
[Peng 2010] Peng, H., et al., “V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets,” Nature Biotech. 28, 348-353 (2010).CrossRefGoogle ScholarPubMed
[Pennicard 2014] Pennicard, D., et al., “A germanium hybrid pixel detector with 55 µm pixel size and 65,000 channels,” J. Instrumentation 9, P12003 (2014).CrossRefGoogle Scholar
[Pérez-Bernéa 2016] Pérez-Bernéa, A. J., et al., “Structural changes in cells imaged by soft x-ray cryo-tomography during hepatitis C virus infection,” ACS Nano 10, 6597-6611 (2016).Google Scholar
[Perrin 2015] Perrin, L., et al., “Evaluation of sample preparation methods for single cell quantitative elemental imaging using proton or synchrotron radiation focused beams,” J. Anal. Atomic Spectr. 30, 2525-2532 (2015).CrossRefGoogle Scholar
[Pfau 2016] Pfau, B. and Eisebitt, S., “X-ray holography,” in [Jaeschke 2016], 1093-1133.Google Scholar
[Pfeifer 2006] Pfeifer, M. A., et al., “Three-dimensional mapping of a deformation field inside a nanocrystal,” Nature 442, 63-66 (2006).CrossRefGoogle ScholarPubMed
[Pfeiffer 2006] Pfeiffer, F., et al., “Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources,” Nature Phys. 2, 258-261 (2006).CrossRefGoogle Scholar
[Pfeiffer 2008] Pfeiffer, F., et al., “Hard-x-ray dark-field imaging using a grating interferometer,” Nature Mater. 7, 134-137 (2008).CrossRefGoogle ScholarPubMed
[Pfeiffer 2009] Pfeiffer, F., et al., “9th international conference on x-ray microscopy,” J. Phys. Conf. Ser. 186, 011001 (2009).Google Scholar
[Pflugrath 2015] Pflugrath, J.W., “Practical macromolecular cryocrystallography,” Acta Cryst. F 71, 622-642 (2015).CrossRefGoogle ScholarPubMed
[Philipp 2011] Philipp, H. T., et al., “Pixel array detector for x-ray free electron laser experiments,” Nuclear Instruments and Methods in Physics Research A 649, 67-69 (2011).CrossRefGoogle Scholar
[Phillips 1979] Phillips, D., “William Lawrence Bragg, 31 March 1890-1 July 1971,” Biogr. Mems. Fell. Roy. Soc. 25, 74-143 (1979).Google Scholar
[Pianetta 1978] Pianetta, P. and Lindau, I., “Phase space analysis applied to x-ray optics,” Nucl. Inst. Meth. 152, 155-159 (1978).CrossRefGoogle Scholar
[Pine 1992] Pine, J. and Gilbert, J., “Live cell specimens for x-ray microscopy,” in [Michette 1992], 384-387.Google Scholar
[Platzman 1953] Platzman, R. L., “Energy transfer from secondary electrons to matter,” in Magee, J. L., et al., eds., Basic Mechanisms in Radiobiology. II. Physical and Chemical Aspects, Subcommittee on Radiobiology, Committee on Nuclear Science, National Research Council, 22-50 (1953).Google Scholar
[Polack 1980] Polack, F., “Photoelectron detection of x-ray images for contact microscopy and microanalysis,” in [Ash 1980], 435-441.Google Scholar
[Polack 1983] Polack, F. and Lowenthal, S., “Project of a photoelectron x-ray microscope on ACO storage ring,” Nucl. Inst. Meth. Phys. Res. 208, 373-377 (1983).Google Scholar
[Polack 1995] Polack, F., et al., “Applications of wavefront division interferometers in soft x rays,” Rev. Sci. Inst. 66, 2180-2183 (1995).CrossRefGoogle Scholar
[Polge 1949] Polge, C., et al., “Revival of spermatozoa after vitrification and dehydration at low temperatures,” Nature 164, 666 (1949).CrossRefGoogle ScholarPubMed
[Polvino 2008] Polvino, S. M., et al., “Synchrotron mi-crobeam x-ray radiation damage in semiconductor layers,” Appl. Phys. Lett. 92, 224105 (2008).CrossRefGoogle Scholar
[Popmintchev 2018] Popmintchev, D., et al., “Near-and extended-edge x-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic su-percontinua,” Phys. Rev. Lett. 120, 093002 (2018).CrossRefGoogle Scholar
[Porcaro 2018] Porcaro, F., et al., “Advances in element spe-ciation analysis of biomedical samples using synchrotron-based techniques,” Trends Anal. Chem. 104, 22-41 (2018).CrossRefGoogle Scholar
[Porod 1982] Porod, G., “General theory,” in Small Angle X-ray Scattering, chapter 2, 17-51, Academic Press, (1982).Google Scholar
[Potdevin 2012] Potdevin, G., et al., “X-ray vector radiography for bone micro-architecture diagnostics,” Phys. Med. Bio. 57, 3451-3461 (2012).CrossRefGoogle ScholarPubMed
[Poulsen 2001] Poulsen, H. F., et al., “Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders,” J. Appl. Cryst. 34, 751-756 (2001).CrossRefGoogle Scholar
[Poulsen 2004] Poulsen, H., Three-Dimensional X-Ray Diffraction Microscopy, volume 205, Springer-Verlag (2004).CrossRefGoogle Scholar
[Poulsen 2014] Poulsen, S. O., et al., “Refractive and diffrac-tive neutron optics with reduced chromatic aberration,” Nucl. Inst. Meth. Phys. Res. A 767, 415-420 (2014).CrossRefGoogle Scholar
[Prasciolu 2015] Prasciolu, M., et al., “Fabrication of wedged multilayer Laue lenses,” Optical Materials Express 5, 748-8 (2015).CrossRefGoogle Scholar
[Pratsch 2014] Pratsch, C., et al., “Influence of random zone positioning errors on the resolving power of Fresnel zone plates,” Opt. Express 22, 30482-30491 (2014).CrossRefGoogle ScholarPubMed
[Press 2007] Press, W. H., et al., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, third edition (2007).Google Scholar
[Prise 2009] Prise, K. M. and O'Sullivan, J. M., “Radiation-induced bystander signalling in cancer therapy,” Nature Rev. Cancer 9, 351-360 (2009).CrossRefGoogle ScholarPubMed
[Puzic 2005] Puzic, A., et al., “Spatially resolved ferromagnetic resonance: imaging of ferromagnetic eigenmodes,” J. Appl. Phys. 97, 10E704 (2005).CrossRefGoogle Scholar
[Puzic 2010] Puzic, A., et al., “Photon counting system for time-resolved experiments in multibunch mode,” Synch. Rad. News 23, (2), 26-32 (2010).CrossRefGoogle Scholar
[Quiney 2006] Quiney, H. M., et al., “Diffractive imaging of highly focused x-ray fields,” Nature Phys. 2, 101-104 (2006).CrossRefGoogle Scholar
[Quitmann 2008] Quitmann, C., et al., “Measuring magnetic excitations in microstructures using x-ray microscopy,” Nucl. Inst. Meth. Phys. Res. A 588, 494-501 (2008).CrossRefGoogle Scholar
[Raabe 2005] Raabe, J., et al., “Quantitative analysis of magnetic excitations in Landau flux-closure structures using synchrotron-radiation microscopy,” Phys. Rev. Lett. 94, 217204 (2005).CrossRefGoogle ScholarPubMed
[Radon 1917] Radon, J., “Über die Bestimmung von Funk-tionen durch ihre Integralwerte längs gewisser Mannig-faltigkeiten,” Berichte der Sächsischen Akademie derWis-senschaft 69, 262-279 (1917).Google Scholar
[Radon 2007] Radon, J., “On the determination of functions from their integral values along certain manifolds,” IEEE Trans. Med. Imaging 5, 170-176 (2007).Google Scholar
[Raines 2010] Raines, K. S., et al., “Three-dimensional structure determination from a single view,” Nature 463, 214-217 (2010).CrossRefGoogle ScholarPubMed
[Ramaseshan 1975] Ramaseshan, F., et al., “A unified approach to the theory of anomalous scattering - some novel applications of the multiple-wavelength method,” in Ra-maseshan, S. and Abrahams, S. C., eds., Anomalous Scattering, 139-161, Munksgaard, (1975).Google Scholar
[Ramilli 2017] Ramilli, M., et al., “Measurements with MÖNCH, a 25 µmpixel pitch hybrid pixel detector,” J. Instrumentation 12, C01071 (2017).CrossRefGoogle Scholar
[Ramires 1995] Ramires, M. L. V., et al., “Standard reference data for the thermal-conductivity of water,” J. Phys. Chem. Ref. Data 24, 1377-1381 (1995).CrossRefGoogle Scholar
[Rampelotto 2013] Rampelotto, P., “Extremophiles and extreme environments,” Life 3, 482-485 (2013).CrossRefGoogle ScholarPubMed
[Ranwez 1896] Ranwez, F., “Application de la photogra-phie par les rayons Röntgen aux recherches analytiques des matières végétales,” Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences 122, 841-842 (1896).Google Scholar
[Rarback 1980] Rarback, H., et al., “Scanning x-ray microscopy - first tests with synchrotron radiation,” in [Ash 1980], 449-456.Google Scholar
[Rarback 1981] Rarback, H. and Kirz, J., “Optical performance of apodized zone plates,” Proc. SPIE 316, 120-125 (1981).Google Scholar
[Rarback 1984] Rarback, H., et al., “Recent results from the Stony Brook scanning microscope,” in [Schmahl 1984], 203-215.Google Scholar
[Rarback 1988a] Rarback, H., et al., “The Stony Brook-NSLS scanning microscope,” in [Sayre 1988], 194-200.Google Scholar
[Rarback 1988b] Rarback, H., et al., “Scanning x-ray microscope with 75-nm resolution,” Rev. Sci. Inst. 59, 52-59 (1988).CrossRefGoogle Scholar
[Rarback 1990] Rarback, H., et al., “Coherent radiation for x-ray imaging - the soft x-ray undulator and the X1A beamline at the NSLS,” J. X-ray Sci. Tech. 2, 274-296 (1990).CrossRefGoogle ScholarPubMed
[Rau 1997] Rau, A. R. P., and Inokuti, M., “The quantum defect: early history and recent developments,” Am. J. Phys. 65, 221-225 (1997).CrossRefGoogle Scholar
[Rau 2017] Rau, C., “X-ray microscopy conference 2016 (XRM 2016),” J. Phys. Conf. Ser. 849, 011001 (2017).Google Scholar
[Rayleigh 1881] Rayleigh, L., “XXV. On copying diffraction-gratings, and on some phenomena connected therewith,” Phil. Mag. 11, 196-205 (1881).CrossRefGoogle Scholar
[Redecke 2013] Redecke, L., et al., “Natively inhibited Try-panosoma brucei Cathepsin B structure determined by using an x-ray laser,” Science 339, 227-230 (2013).CrossRefGoogle Scholar
[Rehbein 2009] Rehbein, S., et al., “Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction,” Phys. Rev. Lett. 103, 110801 (2009).CrossRefGoogle ScholarPubMed
[Rehman 2018] Rehman, S., et al., “Convolutional neural network based image segmentation: a review,” Proc. SPIE 10649, 106490N (2018).Google Scholar
[Reich 2011] Reich, E. S., “Three-dimensional technique on trial,” Nature 480, 303 (2011).CrossRefGoogle ScholarPubMed
[Reimer 1993] Reimer, L., Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, Springer-Verlag, third edition (1993).CrossRefGoogle Scholar
[Reuter 1976] Reuter, B. and Mahr, H., “Experiments with Fourier transform holograms using 4.48 nm x-rays,” J. Phys. E 9, 746-751 (1976).CrossRefGoogle Scholar
[Ribbing 2003] Ribbing, C., et al., “Microstructured diamond x-ray source and refractive lens,” Diamond Rel. Mater. 12, 1793-1799 (2003).CrossRefGoogle Scholar
[Richardson 1972] Richardson, W. H., “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55-5 (1972).CrossRefGoogle Scholar
[Riehle 1968] Riehle, U., “Schnellgefrieren organischer Präparate für die Elektronen-Mikroskopie. Die Vitri-fizierung verdünnter wäßriger Lösungen,” Chemie Inge-nieur Technik 40, 213-218 (1968).Google Scholar
[Riekel 2010] Riekel, C., et al., “Raster microdiffraction with synchrotron radiation of hydrated biopolymers with nanometre step-resolution: case study of starch granules,” J. Synch. Rad. 17, 743-750 (2010).CrossRefGoogle ScholarPubMed
[Rightor 1997] Rightor, E. G., et al., “Spectromicroscopy of poly(ethylene terephthalate): comparison of spectra and radiation damage rates in x-ray absorption and electron energy loss,” J. Phys. Chem. B 101, 1950-1960 (1997).CrossRefGoogle Scholar
[Rightor 2002] Rightor, E. G., et al., “Identification and quantitation of urea precipitates in flexible polyurethane foam formulations by x-ray spectromicroscopy,” Macromolecules 35, 5873-5882 (2002).CrossRefGoogle Scholar
[Rinaldi 2015] Rinaldi, R. and Llovet, X., “Electron probe microanalysis: a review of the past, present, and future,” Microsc. Microanal. 21, 1053-1069 (2015).CrossRefGoogle ScholarPubMed
[Ring 2011] Ring, E. A., et al., “Silicon nitride windows for electron microscopy of whole cells,” J. Microsc. 243, 273-283 (2011).CrossRefGoogle ScholarPubMed
[Ritschl 2012] Ritschl, L., et al., “Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior,” Phys. Med. Bio. 57, 1517-1525 (2012).CrossRefGoogle ScholarPubMed
[Robinson 1998] Robinson, I. K., et al., “Surface morphology by reflectivity of coherent x-rays,” Physica B 248, 387-394 (1998).CrossRefGoogle Scholar
[Robinson 1999] Robinson, I. K., et al., “Coherent x-ray diffraction imaging of silicon oxide growth,” Phys. Rev. B 60, 9965-9972 (1999).CrossRefGoogle Scholar
[Robinson 2001] Robinson, I. K., et al., “Reconstruction of the shapes of gold nanocrystals using coherent x-ray diffraction,” Phys. Rev. Lett. 87, 195505 (2001).CrossRefGoogle ScholarPubMed
[Robinson 2009] Robinson, I. and Harder, R., “Coherent X-ray diffraction imaging of strain at the nanoscale,” Nature Mater. 8, 291-298 (2009).CrossRefGoogle ScholarPubMed
[Robinson 2015] Robinson, A. L., “History of synchrotron radiation,” Synch. Rad. News 28, (4), 4-9 (2015).CrossRefGoogle Scholar
[Rodenburg 1992] Rodenburg, J. M. and Bates, R. H. T., “The theory of super-resolution electron microscopy via Wigner-distribution deconvolution,” Phil. Trans. Roy. Soc. Lon. A 339, 521-553 (1992).Google Scholar
[Rodenburg 2004] Rodenburg, J. M. and Faulkner, H. M., “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795-4797 (2004).CrossRefGoogle Scholar
[Rodenburg 2007a] Rodenburg, J., et al., “Hard-x-ray lens-less imaging of extended objects,” Phys. Rev. Lett. 98, 034801 (2007).CrossRefGoogle Scholar
[Rodenburg 2007b] Rodenburg, J. M., et al., “Transmission microscopy without lenses for objects of unlimited size,” Ultramicroscopy 107, 227-231 (2007).CrossRefGoogle ScholarPubMed
[Rodenburg 2008] Rodenburg, J. M., “Ptychography and related diffractive imaging methods,” Adv. Imaging Electron Phys. 150, 87-184 (2008).Google Scholar
[Rodgers 1997] Rodgers, D. W., “Practical cryocrystallogra-phy,” Meth. Enzymology 276, 183-203 (1997).Google Scholar
[Rodríguez 2015] Rodríguez, J. A., et al., “Three-dimensional coherent x-ray diffractive imaging of whole frozen-hydrated cells,” IUCrJ 2, 575-583 (2015).CrossRefGoogle ScholarPubMed
[Rogers 1950] Rogers, G. L., “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature 166, 237 (1950).CrossRefGoogle ScholarPubMed
[Röntgen 1895] Röntgen, W. C., “Über eine neue Art von Strahlen (Vorläufige Mittheilung),” Sitzungsberichte del Physikalisch-medicinischen Gesellshaft zuWürzburg 137, 132-141 (1895).Google Scholar
[Röntgen 1896a] Röntgen, W. C., “On a new kind of rays,” Nature 53, 274-276 (1896) Translated by A., Stanton.Google Scholar
[Röntgen 1896b] Röntgen, W. C., “On a new kind of rays,” Science 3, 227-231 (1896).CrossRefGoogle ScholarPubMed
[Rose 1946] Rose, A., “Unified approach to performance of photographic film, television pickup tubes, and human eye,” J. Soc. Motion Picture Eng. 47, 273-294 (1946).Google Scholar
[Rosenbaum 1971] Rosenbaum, G., et al., “Synchrotron radiation as a source for x-ray diffraction,” Nature 230, 434-437 (1971).CrossRefGoogle Scholar
[Rosenfeld 1984] Rosenfeld, A., Multiresolution Image Processing and Analysis, Springer-Verlag (1984).CrossRefGoogle Scholar
[Rösner 2018a] Rösner, B., et al., “Exploiting atomic layer deposition for fabricating sub-10 nm x-ray lenses,” Mi-croelectron. Eng. 191, 91-96 (2018).Google Scholar
[Rösner 2018b] Rösner, B., et al., “7 nm spatial resolution in soft x-ray microscopy,” Microsc. Microanal. 24, 272-273 (2018).CrossRefGoogle Scholar
[Ross 2016] Ross, F. M., ed., Liquid Cell Electron Microscopy, Cambridge University Press (2016).CrossRefGoogle Scholar
[Rossbach 2003] Rossbach, J., “Demonstration of gain saturation and controlled variation of pulse length at the TESLA test facility FEL,” Nucl. Inst. Meth. Phys. Res. A 507, 362-367 (2003).CrossRefGoogle Scholar
[Rotenberg 2014] Rotenberg, E. and Bostwick, A., “microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains,” J. Synch. Rad. 21, 1048-1056 (2014).CrossRefGoogle ScholarPubMed
[Ru 2016] Ru, C., et al., eds., Nanopositioning Technologies: Fundamentals and Applications, Springer (2016).CrossRefGoogle Scholar
[Rudati 2011] Rudati, J., et al., “A condenser scanner for artifact-free, large field of view, full-field x-ray microscopy at synchrotrons,” AIP Conf. Proc. 1365, 136-139 (2011).Google Scholar
[Rudolph 1981] Rudolph, D., et al., “Status of sputtered sliced zone plates for x-ray microscopy,” Proc. SPIE 316, 103-105 (1981).Google Scholar
[Rudolph 1984] Rudolph, D., et al., “The Göttingen x-ray microscope and x-ray microscopy experiments at the BESSY storage ring,” in [Schmahl 1984], 192-202.Google Scholar
[Rudolph 1990] Rudolph, D., et al., “Amplitude and phase contrast in x-ray microscopy,” in Duke, P. J. and Michette, A. G., eds., Modern Microscopies, 59-67, Plenum, (1990).Google Scholar
[Ruhlandt 2017] Ruhlandt, A., et al., “Four dimensional material movies: high speed phase-contrast tomography by backprojection along dynamically curved paths,” Sci. Rep. 7, 6487 (2017).CrossRefGoogle ScholarPubMed
[Rundquist 1998] Rundquist, A., et al., “Phase-matched generation of coherent soft x-rays,” Science 280, 1412-1415 (1998).CrossRefGoogle ScholarPubMed
[Ruska 1979] Ruska, E., “Die frühe Entwicklung der Elek-tronenlinsen und der Electronenmikroskopie,” Acta his-torica Leopoldina 12 (1979).Google Scholar
[Ruska 1980] Ruska, E., “The early development of electron lenses and electron microscopy,” Microscopica Acta Supplement 5, 1-140 (1980).Google Scholar
[Russ 1984] Russ, J. C., Fundamentals of Energy Dispersive X-ray Analysis, Butterworths (1984).Google Scholar
[Rust 2006] Rust, M. J., et al., “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nature Methods 3, 793-796 (2006).CrossRefGoogle Scholar
[Ruze 1952] Ruze, J., “The effect of aperture errors on the antenna radiation pattern,” Il Nuovo Cimento 9, 364-380 (1952).CrossRefGoogle Scholar
[Ryan 1993] Ryan, C. G. and Jamieson, D. N., “Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping,” Nucl. Inst. Meth. Phys. Res. B 77, 203-214 (1993).CrossRefGoogle Scholar
[Ryan 2000] Ryan, C. G., “Quantitative trace element imaging using PIXE and the nuclear microprobe,” Int. J. Imaging Sys. Technol. 11, 219-230 (2000).Google Scholar
[Ryan 2010] Ryan, C. G., et al., “Elemental x-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle,” Nucl. Inst. Meth. Phys. Res. A 619, 37-43 (2010).CrossRefGoogle Scholar
[Ryan 2014] Ryan, C. G., et al., “Maia x-ray fluorescence imaging: capturing detail in complex natural samples,” J. Phys. Conf. Ser. 499, 012002 (2014).CrossRefGoogle Scholar
[Rydberg 1890] Rydberg, J. R., “Recherches sur la constitution des spectres d’ émission des éléments chim-iques,” Kungliga Svenska Vetenskaps Akademiens Han-dlingar 23, 1-155 (1890).Google Scholar
[Rymell 1993] Rymell, L. and Hertz, H. M., “Droplet target for low-debris laser-plasma soft x-ray generation,” Optics Comm. 103, 105-110 (1993).CrossRefGoogle Scholar
[Rymell 1995] Rymell, L., et al., “Debris-free single-line laser-plasma x-ray source for microscopy,” Appl. Phys. Lett. 66, 2625-2627 (1995).CrossRefGoogle Scholar
[Rytov 1937] Rytov, S. M., “Diffraction of light by ultrasonic waves,” Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 2, 223 (1937).Google Scholar
[Safarik 2004] Safarik, D. J. and Mullins, C. B., “The nucleation rate of crystalline ice in amorphous solid water,” J. Chem. Phys. 121, 6003-6010 (2004).CrossRefGoogle ScholarPubMed
[Saldin 1999] Saldin, E. L., et al., “FAST: a three-dimensional time-dependent FEL simulation code,” Nucl. Inst. Meth. Phys. Res. A 429, 233-237 (1999).CrossRefGoogle Scholar
[Saleh 1979] Saleh, B. E. A., “Optical bilinear transformations: general properties,” Optica Acta 26, 777-799 (1979).CrossRefGoogle Scholar
[Salem 1974] Salem, S. I., et al., “Experimental K and L relative x-ray emission rates,” Atom. Dat. Nucl. Dat. Tab. 14, 91-109 (1974).Google Scholar
[Saloman 1987] Saloman, E. B. and Hubbell, J. H., “Critical analysis of soft x-ray cross section data,” Nucl. Inst. Meth. Phys. Res. A 255, 38-42 (1987).CrossRefGoogle Scholar
[Saloman 1988] Saloman, E. B., et al., “X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92,” Atom. Dat. Nucl. Dat. Tab. 38, 1-196 (1988).Google Scholar
[Samson 1967] Samson, J. A. R., Techniques of Vacuum Ultraviolet Spectroscopy, Wiley (1967).Google Scholar
[Sanchez-Cano 2017] Sanchez-Cano, C., et al., “Synchrotron x-ray fluorescence nanoprobe reveals target sites for organo-osmium complex in human ovarian cancer cells,” Chem. Eur. J. 23, 2512-2516 (2017).Google ScholarPubMed
[Sandberg 2007] Sandberg, K., “Methods for image segmentation in cellular tomography,” Meth. Cell Bio. 79, 769-798 (2007).Google ScholarPubMed
[Sandberg 2008] Sandberg, R., et al., “High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution,” Proc. Nat. Acad. Sci. 105, 24-27 (2008).CrossRefGoogle ScholarPubMed
[Sandford 2006] Sandford, S., et al., “Organics captured from comet 81P/Wild 2 by the Stardust spacecraft,” Science 314, 1720-1724 (2006).CrossRefGoogle ScholarPubMed
[Sandström 1957] Sandström, A. E., “Experimental methods of x-ray spectroscopy: ordinary wavelengths,” in Flügge, S., ed., Light and Matter II, 78-245, Springer-Verlag, (1957).Google Scholar
[Sanishvili 2011] Sanishvili, R., et al., “Radiation damage in protein crystals is reduced with a micron-sized x-ray beam,” Proc. Nat. Acad. Sci. 108, 6127-6132 (2011).CrossRefGoogle ScholarPubMed
[Santra 2016] Santra, R. and Young, L., “Interaction of intense x-ray beams with atoms,” in [Jaeschke 2016], 1233-1260.Google Scholar
[Sartori 1993] Sartori, N., et al., “Vitrification depth can be increased more than 10-fold by high-pressure freezing,” J. Microsc. 172, 55-61 (1993).CrossRefGoogle Scholar
[Sartori 2007] Sartori, A., et al., “Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography,” J. Struct. Bio. 160, 135-145 (2007).CrossRefGoogle ScholarPubMed
[Sasaki 1989] Sasaki, S., “Numerical tables of anomalous scattering factors calculated by the Cromer and Liber-man's method,” Technical Report KEK Report 88-14, KEK, Tsukuba, Japan, (1989).Google Scholar
[Saubermann 1975] Saubermann, A. J. and Echlin, P., “The preparation, examination and analysis of frozen hydrated tissue sections by scanning transmission electron microscopy and x-ray microanalysis,” J. Microsc. 105, 155-191 (1975).CrossRefGoogle ScholarPubMed
[Saubermann 1981] Saubermann, A. J., et al., “Application of scanning electron microscopy to x-ray analysis of frozen-hydrated sections. I. Specimen handling techniques,” J. Cell Bio. 88, 257-267 (1981).Google ScholarPubMed
[Saubermann 1985] Saubermann, A. J. and Scheid, V. L., “Elemental composition and water content of neuron and glial cells in the central nervous system of the North American medicinal leech (Macrobdella decora),” J. Neu-rochem. 44, 825-834 (1985).Google Scholar
[Saxberg 1981] Saxberg, B. E. H., and Saxton, W. O., “Quantum noise in 2D projections and 3D reconstructions,” Ultramicroscopy 6, 85-90 (1981).CrossRefGoogle Scholar
[Saxton 1982] Saxton, W. O. and Baumeister, W., “The correlation averaging of a regularly arranged bacterial cell envelope protein,” J. Microsc. 127, 127-138 (1982).CrossRefGoogle ScholarPubMed
[Sayers 1971] Sayers, D. E., et al., “New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray-absorption fine structure,” Phys. Rev. Lett. 27, 1204-1207 (1971).CrossRefGoogle Scholar
[Sayre 1952a] Sayre, D., “Some implications of a theorem due to Shannon,” Acta Cryst. 5, 843-843 (1952).CrossRefGoogle Scholar
[Sayre 1952b] Sayre, D., “The squaring method: a new method for phase determination,” Acta Cryst. 5, 60-65 (1952).CrossRefGoogle Scholar
[Sayre 1972] Sayre, D., “Proposal for the utilization of electron beam technology in the fabrication of an image forming device for the soft x-ray region,” Technical Report RC 3974 (#17965), IBM T. J., Watson Research Laboratory, Yorktown Heights, New York, (1972).Google Scholar
[Sayre 1977a] Sayre, D., et al., “Potential operating region for ultrasoft x-ray microscopy of biological specimens,” Science 196, 1339-1340 (1977).CrossRefGoogle Scholar
[Sayre 1977b] Sayre, D., et al., “Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft x-ray photons,” Ul-tramicroscopy 2, 337-341 (1977).Google ScholarPubMed
[Sayre 1980] Sayre, D., “Prospects for long-wavelength x-ray microscopy and diffraction,” in Schlenker, M., et al., eds., Imaging Processes and Coherence in Physics, volume 112, 229-235, Springer-Verlag, (1980).Google Scholar
[Sayre 1981] Sayre, D. and Feder, R., “Status report on contact x-ray microscopy,” Proc. SPIE 316, 56-61 (1981).Google Scholar
[Sayre 1988] Sayre, D., et al., eds., X-ray Microscopy II, Springer-Verlag (1988).CrossRefGoogle Scholar
[Scarmozzino 1991] Scarmozzino, R. and Osgood Jr., R. M., “Comparison of finite-difference and Fourier-transform solutions of the parabolic wave-equation with emphasis on integrated-optics applications,” J. Opt. Soc. Am. A 8, 724-731 (1991).CrossRefGoogle Scholar
[Schäfer 2003] Schäfer, T., et al., “Functional group analysis of natural organic colloids and clay association kinetics using C(1s) spectromicroscopy,” Journal de Physique IV 104, 409-412 (2003).CrossRefGoogle Scholar
[Schäfer 2005] Schäfer, T., et al., “Origin and mobility of fulvic acids in the Gorleben aquifer system: implications from isotopic data and carbon/sulfur XANES,” Organic Geochem. 36, 567-582 (2005).CrossRefGoogle Scholar
[Schäfer 2009] Schäfer, T., et al., “Radiation sensitivity of natural organic matter: clay mineral association effects in the Callovo-Oxfordian argillite,” J. Electron Spect. Rel. Phenom. 170, 49-56 (2009).CrossRefGoogle Scholar
[Schaff 2015] Schaff, F., et al., “Six-dimensional real and reciprocal space small-angle x-ray scattering tomography,” Nature 527, 353-356 (2015).CrossRefGoogle ScholarPubMed
[Scharf 2011] Scharf, O., et al., “Compact pnCCD-based x-ray camera with high spatial and energy resolution: a color x-ray camera,” Anal. Chem. 83, 2532-2538 (2011).CrossRefGoogle ScholarPubMed
[Scheinost 2001] Scheinost, A., et al., “Carbon group chemistry of humic and fulvic acid: a comparison of C-1s NEX-AFS and 13C-NMR spectroscopies,” in Ghabbour, E. A. and Davies, G., eds., Humic Substances: Structures, Models and Functions, Royal Society of Chemistry, 37-45 (2001).Google Scholar
[Scheres 2007] Scheres, S. H. W., et al., “Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization,” Nature Methods 4, 27-29 (2007).CrossRefGoogle ScholarPubMed
[Scheres 2010] Scheres, S. H. W., “Visualizing molecular machines in action: single-particle analysis with structural variability,” Advances in Protein Chemistry and Structural Biology 81, 89-119 (2010).Google ScholarPubMed
[Scherzer 1936] Scherzer, O., “Über einige Fehler von Elek-tronenlinsen,” Zeitschrift für Physik 101, 593-603 (1936).CrossRefGoogle Scholar
[Scherzer 1949] Scherzer, O., “The theoretical resolution limit of the electron microscope,” J. Appl. Phys. 20, 20-29 (1949).CrossRefGoogle Scholar
[Schields 2002] Schields, P. J., et al., “Overview of polycap-illary x-ray optics,” Powder Diffraction 17, 70-80 (2002).CrossRefGoogle Scholar
[Schlotter 2006] Schlotter, W., et al., “Multiple reference Fourier transform holography with soft x rays,” Appl. Phys. Lett. 89, 163112 (2006).CrossRefGoogle Scholar
[Schlotter 2007] Schlotter, W. F., et al., “Extended field of view soft x-ray Fourier transform holography: toward imaging ultrafast evolution in a single shot,” Opt. Lett. 32, 3110-3112 (2007).CrossRefGoogle Scholar
[Schmahl 1969] Schmahl, G. and Rudolph, D., “Lichtstarke Zonenplatten als abbildende Systeme für weiche Röntgenstrahlung (High power zone plates as image forming systems for soft x-rays),” Optik 29, 577-585 (1969).Google Scholar
[Schmahl 1980] Schmahl, G., et al., “Imaging and scanning soft x-ray microscopy with zone plates,” in [Ash 1980], 393-412.Google Scholar
[Schmahl 1982] Schmahl, G. A., et al., “Status of the zone plate microscope,” Proc. SPIE 316, 100-102 (1982).Google Scholar
[Schmahl 1984] Schmahl, G. and Rudolph, D., eds., X-ray Microscopy, Springer-Verlag (1984).CrossRefGoogle Scholar
[Schmahl 1987] Schmahl, G. and Rudolph, D., “Proposal for a phase contrast x-ray microscope,” in [Cheng 1987], 231-238.
[Schmahl 1988] Schmahl, G., et al., “Phase contrast x-ray microscopy - experiments at the BESSY storage ring,” in [Sayre 1988], 228-232.Google Scholar
[Schmahl 1993] Schmahl, G., et al., “X-ray microscopy studies,” Optik 93, 95-102 (1993).Google Scholar
[Schmahl 1994] Schmahl, G., et al., “Phase contrast x-ray microscopy studies,” Optik 97, 181-182 (1994).Google Scholar
[Schmidt 2010] Schmidt, J. D., Numerical Simulation of Optical Wave Propagation, SPIE Press (2010).Google Scholar
[Schneider 1995a] Schneider, G., et al., “Cryo x-ray microscopy,” Synch. Rad. News 8, (3), 19-28 (1995).CrossRefGoogle Scholar
[Schneider 1995b] Schneider, G., et al., “Cross-linked polymers for nanofabrication of high-resolution zone plates in nickel and germanium,” J. Vac. Sci. Tech. B 13, 2809-2812 (1995).CrossRefGoogle Scholar
[Schneider 1997] Schneider, G., “Zone plates with high efficiency in high orders of diffraction described by dynamical theory,” Appl. Phys. Lett. 71, 2242-2244 (1997).CrossRefGoogle Scholar
[Schneider 1998a] Schneider, G., “Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast,” Ultramicroscopy 75, 85-104 (1998).CrossRefGoogle ScholarPubMed
[Schneider 1998b] Schneider, G. and Niemann, B., “Cryo x-ray microscopy experiments with the x-ray microscope at BESSY,” in [Thieme 1998b], I-25-34.CrossRefGoogle Scholar
[Schneider 2001] Schneider, G., et al., “In situ x-ray microscopic observation of the electromigration in passivated Cu interconnects,” Appl. Phys. Lett. 78, 1936-1938 (2001).CrossRefGoogle Scholar
[Schneider 2008] Schneider, G., et al., “Volume effects in zone plates,” in Erko, A., et al., eds., Modern Developments in X-ray and Neutron Optics, 137-171, Springer, (2008).Google Scholar
[Schneider 2010] Schneider, G., et al., “Three-dimensional cellular ultrastructure resolved by x-ray microscopy,” Nature Methods 7, 985-987 (2010).CrossRefGoogle ScholarPubMed
[Schneider 2012] Schneider, G., et al., “Cryo x-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging,” J. Struct. Bio. 177, 212-223 (2012).CrossRefGoogle ScholarPubMed
[Schneider 2016] Schneider, N. M., “Electron beam effects in liquid cell TEM and STEM,” in [Ross 2016], 140-163.Google Scholar
[Schoonjans 2011a] Schoonjans, T., et al., “The xraylib library for X-ray-matter interactions. Recent developments,” Spectrochimica Acta B 66, 776-784 (2011).CrossRefGoogle Scholar
[Schoonjans 2011b] Schoonjans, T., et al., “The xraylib library for x-ray-matter interaction cross sections: new developments and applications,” Proc. SPIE 8141, 814110 (2011).CrossRefGoogle Scholar
[Schoonjans 2012] Schoonjans, T., et al., “A general Monte Carlo simulation of energy dispersive x-ray fluorescence spectrometers - Part 5. Polarized radiation, stratified samples, cascade effects, M-lines,” Spectrochimica Acta B 70, 10-23 (2012).CrossRefGoogle Scholar
[Schoonjans 2013] Schoonjans, T., et al., “A general Monte Carlo simulation of energy-dispersive x-ray fluorescence spectrometers - Part 6. Quantification through iterative simulations,” Spectrochimica Acta B 82, 36-41 (2013).CrossRefGoogle Scholar
[Schröder 1990] Schröder, R. R., et al., “Zero-loss energy filtering as improved imaging mode in cryoelectronmi-croscopy of frozen-hydrated specimens,” J. Struct. Bio. 105, 28-34 (1990).CrossRefGoogle Scholar
[Schrödinger 1926a] Schrödinger, E., “Quantisierung als Eigenwerproblem. Erste Mitteilung,” Annalen der Physik 79, 361-376 (1926).Google Scholar
[Schrödinger 1926b] Schrödinger, E., “Quantisierung als Eigenwertproblem. Zweite Mitteilung,” Annalen der Physik 79, 489-527 (1926).Google Scholar
[Schroer 2001] Schroer, C. G., “Reconstructing x-ray fluorescence microtomograms,” Appl. Phys. Lett. 79, 1912 (2001).CrossRefGoogle Scholar
[Schroer 2002] Schroer, C. G., et al., “Beryllium parabolic refractive x-ray lenses,” Proc. SPIE 4783, 10-18 (2002).Google Scholar
[Schroer 2003] Schroer, C. G. et al., “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82, 1485-1487 (2003).CrossRefGoogle Scholar
[Schroer 2005a] Schroer, C., et al., “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87 (2005).CrossRefGoogle Scholar
[Schroer 2005b] Schroer, C. G. and Lengeler, B., “Focusing hard x rays to nanometer dimensions by adiabatically focusing lenses,” Phys. Rev. Lett. 94, 54802 (2005).CrossRefGoogle ScholarPubMed
[Schropp 2010a] Schropp, A., et al., “Hard x-ray nanobeam characterization by coherent diffraction microscopy,” Appl. Phys. Lett. 96, 091102 (2010).CrossRefGoogle Scholar
[Schropp 2010b] Schropp, A., et al., “Non-destructive and quantitative imaging of a nano-structured microchip by ptychographic hard x-ray scanning microscopy,” J. Mi-crosc. 241, 9-12 (2010).Google Scholar
[Schropp 2010c] Schropp, A. and Schroer, C. G., “Dose requirements for resolving a given feature in an object by coherent x-ray diffraction imaging,” New J. Phys. 12, 035016 (2010).CrossRefGoogle Scholar
[Schropp 2012] Schropp, A., et al., “Hard x-ray scanning microscopy with coherent radiation: beyond the resolution of conventional x-ray microscopes,” Appl. Phys. Lett. 100, 253112 (2012).CrossRefGoogle Scholar
[Schulze 1998] Schulze, C., et al., “Microfocusing of hard x-rays with cylindrically bent crystal monochromators,” J. Synch. Rad. 5, 77-81 (1998).CrossRefGoogle ScholarPubMed
[Schumacher 1958] Schumacher, K., “Über die Veränderung von HD- und ND-Polyäthylen durch Röntgenbe-strahlung,” Kolloid-Zeitschrift 157, 16-27 (1958).CrossRefGoogle Scholar
[Schumacher 2005] Schumacher, M., et al., “Chemical heterogeneity of organic soil colloids investigated by scanning transmission x-ray microscopy and C-1s NEXAFS microscopy,” Env. Sci. Tech. 39, 9094-9100 (2005).CrossRefGoogle Scholar
[Schütz 1987] Schütz, G., et al., “Absorption of circularly polarized x rays in iron,” Phys. Rev. Lett. 58, 737-740 (1987).CrossRefGoogle ScholarPubMed
[Schwartz 2007] Schwartz, C. L., et al., “Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photo-bleaching,” J. Microsc. 227, 98-109 (2007).CrossRefGoogle Scholar
[Schwarzschild 1905] Schwarzschild, K., “Untersuchungen zur geometrischen Optik. II. Theorie der Spiegeltele-scope,” Astronomische Mittheilungen der Königlichen Sternwarte zu Göttingen 9, 2-28 (1905).Google Scholar
[Schwarzschild 1928] Schwarzschild, M. M., “Theory of the double x-ray spectrometer,” Phys. Rev. 32, 162-171 (1928).CrossRefGoogle Scholar
[Schwinger 1949] Schwinger, J., “On the classical radiation of accelerated electrons,” Phys. Rev. 75, 1912-1925 (1949).CrossRefGoogle Scholar
[Seales 2016] Seales, W. B., et al., “From damage to discovery via virtual unwrapping: reading the scroll from En-Gedi,” Sci. Adv. 2, e1601247 (2016).CrossRefGoogle ScholarPubMed
[Segelstein 1981] Segelstein, D. J., “The complex refractive index of water,” Masters of science, University of Missouri-Kansas City, (1981).Google Scholar
[Seibert 2011] Seibert, M. M., et al., “Single mimivirus particles intercepted and imaged with an x-ray laser,” Nature 469, 78-81 (2011).Google Scholar
[Seiboth 2017] Seiboth, F., et al., “Perfect x-ray focusing via fitting corrective glasses to aberrated optics,” Nature Comm. 8, 14623-5 (2017).CrossRefGoogle ScholarPubMed
[Sekimoto 1982] Sekimoto, M., et al., “Silicon nitride single-layer x-ray mask,” J. Vac. Sci. Tech. 21, 1017-1021 (1982).CrossRefGoogle Scholar
[Selin 2014] Selin, M., et al., “3D simulation of the image formation in soft x-ray microscopes,” Opt. Express 22, 30756-30768 (2014).CrossRefGoogle ScholarPubMed
[Selin 2015] Selin, M., et al., “Tomographic reconstruction in soft x-ray microscopy using focus-stack back-projection,” Opt. Lett. 40, 2201-2204 (2015).CrossRefGoogle ScholarPubMed
[Serra 2016] Serra, E., et al., “Microfabrication of large-area circular high-stress silicon nitride membranes for optome-chanical applications,” AIP Advances 6, 065004 (2016).CrossRefGoogle Scholar
[Shabelnikov 2002] Shabelnikov, L., et al., “X-ray lens with kinoform refractive profile created by x-ray lithography,” Proc. SPIE 4783, 176-184 (2002).Google Scholar
[Shapiro 2005] Shapiro, D., et al., “Biological imaging by soft x-ray diffraction microscopy,” Proc. Nat. Acad. Sci. 102, 15343-15346 (2005).CrossRefGoogle ScholarPubMed
[Shapiro 2014] Shapiro, D. A., et al., “Chemical composition mapping with nanometre resolution by soft x-ray microscopy,” Nature Photonics 8, 765-769 (2014).CrossRefGoogle Scholar
[Sharif 2016] Sharif, M., et al., “Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition,” in Weippl, E. and Katzenbeisser, S., eds., CCS ’16: Proceedings of the 2016 ACM SIGSAC Conference on Computing and Communications, ACM Press, 1528-1540 (2016).Google Scholar
[Shastri 2001] Shastri, S. D., et al., “Microfocusing of 50 kev undulator radiation with two stacked zoneplates,” Optics Comm. 197, 9-14 (2001).CrossRefGoogle Scholar
[Shaver 1980] Shaver, D. C., et al., “X-ray zone plates fabricated using electron-beam and x-ray lithography,” J. Vac. Sci. Tech. 16, 1626-1630 (1980).Google Scholar
[Shaw 1963] Shaw, R., “The equivalent quantum efficiency of the photographic process,” J. Photogr. Sci. 11, 199-204 (1963).Google Scholar
[Shen 2004] Shen, Q., et al., “Diffractive imaging of non-periodic materials with future coherent x-ray sources,” J. Synch. Rad. 11, 432-438 (2004).CrossRefGoogle Scholar
[Shepp 1974] Shepp, L. A. and Logan, B. F., “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21-43 (1974).CrossRefGoogle Scholar
[Shepp 1979] Shepp, L. A., et al., “The tuning fork artifact in computerized tomography,” Comput. Graph. Image Process. 10, 246-255 (1979).CrossRefGoogle Scholar
[Shepp 1982] Shepp, L. A. and Vardi, Y., “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113-122 (1982).CrossRefGoogle ScholarPubMed
[Sherman 1955] Sherman, J., “The theoretical derivation of fluorescent x-ray intensities from mixtures,” Spectrochim-ica Acta 7, 283-306 (1955).Google Scholar
[Sherman 1967] Sherman, G. C., “Application of the convolution theorem to Rayleigh's integral formulas,” J. Opt. Soc. Am. 57, 546-547 (1967).CrossRefGoogle ScholarPubMed
[Shi 2016] Shi, X., et al., “Soft x-ray ptychography studies of nanoscale magnetic and structural correlations in thin SmCo5 films,” Appl. Phys. Lett. 108, 094103 (2016).CrossRefGoogle Scholar
[Shi 2019] Shi, Y., et al., “Evaluation of the performance of classification algorithms for XFEL single-particle imaging data,” IUCrJ 6, 1-10 (2019).CrossRefGoogle ScholarPubMed
[Shinohara 1996] Shinohara, K., et al., “X-ray holographic microscopy of biological specimens with an electronic zooming tube,” J. Synch. Rad. 3, 35-40 (1996).CrossRefGoogle ScholarPubMed
[Shockley 1961] Shockley, W., “Problems related to p-n junctions in silicon,” Solid-State Electron. 2, 35-67 (1961).CrossRefGoogle Scholar
[Shu 1988] Shu, D., et al., “Two-dimensional laser interferometric encoder for the soft x-ray scanning microscope at the NSLS,” Nucl. Inst. Meth. Phys. Res. A 266, 313-317 (1988).CrossRefGoogle Scholar
[Siddons 2014] Siddons, D. P., et al., “Maia x-ray micro-probe detector array system,” J. Phys. Conf. Ser. 499, 012001 (2014).CrossRefGoogle Scholar
[Siegbahn 1925] Siegbahn, M., The Spectroscopy of X-rays, Oxford University Press (1925).Google Scholar
[Siegel 1990] Siegel, A., et al., “Method and device for producing phase-contrast images,” US Patent Office patent 4,953,188 (filed 1989, granted 1990).
[Sievert 1936] Sievert, R. M., “Two methods of Roentgen micro-photography (preliminary report),” Acta Radiolog-ica 17, 299-309 (1936).Google Scholar
[Silfvast 1988] Silfvast, W. T. and Wood, O. R., “Tenth micron lithography with a 10 Hz 37.2 nm sodium laser,” Mi-croelectron. Eng. 8, 3-11 (1988).Google Scholar
[Simons 2017] Simons, H., et al., “Simulating and optimizing compound refractive lens-based x-ray microscopes,” J. Synch. Rad. 24, 392-401 (2017).CrossRefGoogle ScholarPubMed
[Simpson 1983] Simpson, M. J. and Michette, A. G., “The effects of manufacturing inaccuracies on the imaging properties of Fresnel zone plates,” Optica Acta 30, 1455-1462 (1983).CrossRefGoogle Scholar
[Simpson 1984] Simpson, M. J. and Michette, A. G., “Imaging properties of modified Fresnel zone plates,” Optica Acta 31, 403-413 (1984).CrossRefGoogle Scholar
[Singer 2012] Singer, A., et al., “Spatial and temporal coherence properties of single free-electron laser pulses,” Opt. Express 20, 17480-17495 (2012).CrossRefGoogle ScholarPubMed
[Singer 2018] Singer, A., et al., “Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging,” Nature Energy 3, 1-7 (2018).CrossRefGoogle Scholar
[Sinha 2014] Sinha, S. K., et al., “X-ray photon correlation spectroscopy studies of surfaces and thin films,” Adv. Mater. 26, 7764-7785 (2014).CrossRefGoogle ScholarPubMed
[Slep 2000] Slep, D., et al., “The effect of an interactive surface on the equilibrium contact angle in bilayer polymer films,” Langmuir 16, 2369-2375 (2000).CrossRefGoogle Scholar
[Smilgies 2008] Smilgies, D., “Compact matrix formalism for phase space analysis of complex optical systems,” App. Opt. 47, E106-E115 (2008).Google ScholarPubMed
[Smistad 2015] Smistad, E., et al., “Medical image segmentation on GPUs - a comprehensive review,” Med. Image Anal. 20, 1-18 (2015).CrossRefGoogle ScholarPubMed
[Smith 1934] Smith, L. P., “The determination of x-ray line shapes by a double crystal spectrometer,” Phys. Rev. 46, 343-351 (1934).CrossRefGoogle Scholar
[Smith 1992] Smith, S. and Chetwynd, D., Foundations of Ultraprecision Mechanism Design, Gordon and Breach (1992).Google Scholar
[Smith 1996] Smith, A. P. and Ade, H., “Quantitative orientational analysis of a polymeric material (KevlarTM fibers) with x-ray microspectroscopy,” Appl. Phys. Lett. 69, 3833-3835 (1996).CrossRefGoogle Scholar
[Smith 2001] Smith, A. P. and Ade, H. W., “Cryogenic mechanical alloying as an alternative strategy for the recycling of tires,” Polymer 42, 4453-4457 (2001).CrossRefGoogle Scholar
[Smith 2014] Smith, E. A., et al., “Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies,” Biophys. J. 107, 1988-1996 (2014).CrossRefGoogle ScholarPubMed
[Snigirev 1996] Snigirev, A., et al., “A compound refractive lens for focusing high energy x-rays,” Nature 384, 49-51 (1996).CrossRefGoogle Scholar
[Snigirev 2002] Snigirev, A. A., et al., “Diamond refractive lens for hard x-ray focusing,” Proc. SPIE 4783, 1-9 (2002).Google Scholar
[Snigirev 2009] Snigirev, A., et al., “High energy x-ray transfocator based on Al parabolic refractive lenses for focusing and collimation,” J. Phys. Conf. Ser. 186, 012073 (2009).CrossRefGoogle Scholar
[Sobott 2013] Sobott, B. A., et al., “Success and failure of dead-time models as applied to hybrid pixel detectors in high-flux applications,” J. Synch. Rad. 20, 347-354 (2013).CrossRefGoogle ScholarPubMed
[Solé 2007] Solé, V. A., et al., “A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra,” Spectrochimica Acta B 62, 63-68 (2007).CrossRefGoogle Scholar
[Solem 1982a] Solem, J. C., “High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens,” Technical Report LA-9508-MS, Los Alamos National Laboratory, (1982).Google Scholar
[Solem 1982b] Solem, J. C. and Baldwin, G. C., “Micro-holography of living organisms,” Science 218, 229-235 (1982).CrossRefGoogle ScholarPubMed
[Solem 1984] Solem, J. C. and Chapline, G. F., “X-ray biomicroholography,” Opt. Eng. 23, 193-203 (1984).CrossRefGoogle Scholar
[Solem 1986] Solem, J. C., “Imaging biological specimens with high-intensity soft x rays,” J. Opt. Soc. Am. B 3, 1551-1565 (1986).CrossRefGoogle Scholar
[Solomon 2007] Solomon, D., et al., “Long-term impacts of anthropogenic perturbations on the dynamics and molecular speciation of organic carbon in tropical forest and subtropical grassland ecosystems,” Glob. Change Bio. 13, 511-530 (2007).CrossRefGoogle Scholar
[Solomon 2012] Solomon, D., et al., “Micro- and nano-environments of carbon sequestration: multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations,” Chem. Geo. 329, 53-73 (2012).CrossRefGoogle Scholar
[Soman 2013] Soman, M. R., et al., “Improving the spatial resolution of soft x-ray detection using an electron-multiplying charge-coupled device,” J. Instrumentation 8, C01046 (2013).CrossRefGoogle Scholar
[Somlyo 1985] Somlyo, A. P., et al., “Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo,” Nature 314, 622-625 (1985).CrossRefGoogle ScholarPubMed
[Somlyo 1988] Somlyo, A. V., et al., “Atrial-specific granules in situ have high calcium content, are acidic, and maintain anion gradients,” Proc. Nat. Acad. Sci. 85, 6222-6226 (1988).CrossRefGoogle ScholarPubMed
[Song 2008a] Song, C., et al., “Nanoscale imaging of buried structures with elemental specificity using resonant x-ray diffraction microscopy,” Phys. Rev. Lett. 100, 025504 (2008).CrossRefGoogle ScholarPubMed
[Song 2008b] Song, C., et al., “Quantitative imaging of single, unstained viruses with coherent x rays,” Phys. Rev. Lett. 101, 158101 (2008).CrossRefGoogle ScholarPubMed
[Sorrentino 2015] Sorrentino, A., et al., “MISTRAL: a transmission soft x-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging,” J. Synch. Rad. 22, 1-6 (2015).CrossRefGoogle ScholarPubMed
[Soulaine 2016] Soulaine, C., et al., “The impact of sub-resolution porosity of x-ray microtomography images on the permeability,” Trans. Porous Med. 113, 227-243 (2016).CrossRefGoogle Scholar
[Southworth-Davies 2007] Southworth-Davies, R. J. and Garman, E. F., “Radioprotectant screening for cryocrys-tallography,” J. Synch. Rad. 14, 73-83 (2007).CrossRefGoogle Scholar
[Spahn 2009] Spahn, C. M. and Penczek, P. A., “Exploring conformational modes of macromolecular assemblies by multiparticle cryo-EM,” Curr. Opin. Struct. Bio. 19, 623-631 (2009).CrossRefGoogle ScholarPubMed
[Spahn 2013] Spahn, M., “X-ray detectors in medical imaging,” Nucl. Inst. Meth. Phys. Res. A 731, 57-63 (2013).CrossRefGoogle Scholar
[Sparks Jr. 1979] Sparks, C. J. Jr., et al., “X-ray fluorescence with synchrotron radiation,” IEEE Trans. Nucl. Sci. 26, 1368-1372 (1979).CrossRefGoogle Scholar
[Sparks 1980] Sparks, C. J. Jr., “X-ray fluorescence mi-croprobe for chemical analysis,” in Winick, H. and Do-niach, S., eds., Synchrotron Radiation Research, chapter 14, 459-512, Plenum Press, (1980).Google Scholar
[Sparrow 1916] Sparrow, C. M., “On spectroscopic resolving power,” Astrophysical Journal 44, 76-86 (1916).CrossRefGoogle Scholar
[Späth 2014] Späth, A., et al., “STXM goes 3D: digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy,” Ultramicroscopy 144, 19-25 (2014).CrossRefGoogle ScholarPubMed
[Spears 1972] Spears, D. L. and Smith, H. I., “High-resolution pattern replication using soft X rays,” Electron. Lett. 8, 102-104 (1972).CrossRefGoogle Scholar
[Spector 1997] Spector, S., et al., “Process optimization for production of sub-20 nm soft x-ray zone plates,” J. Vac. Sci. Tech. B 15, 2872-2876 (1997).CrossRefGoogle Scholar
[Spence 2002] Spence, J., et al., “Phase recovery and lens-less imaging by iterative methods in optical, x-ray and electron diffraction,” Phil. Trans. Roy. Soc. Lon. A 360, 875-895 (2002).Google Scholar
[Spence 2004] Spence, J. C. H., et al., “Coherence and sampling requirements for diffractive imaging,” Ultrami-croscopy 101, 149-152 (2004).Google ScholarPubMed
[Spieler 2005] Spieler, H., Semiconductor Detector Systems, Oxford University Press (2005).CrossRefGoogle Scholar
[Spiller 1972] Spiller, E., “Low-loss reflection coatings using absorbing materials,” Appl. Phys. Lett. 20, 365-367 (1972).CrossRefGoogle Scholar
[Spiller 1974] Spiller, E., “Multilayer interference coatings for the vacuum ultraviolet,” in Thompson, B. J. and Shannon, R. R., eds., Space Optics: Proceedings of the Ninth International Congress of the International Commission for Optics, 581-597, National Academy of Sciences, (1974).Google Scholar
[Spiller 1980] Spiller, E., “The scanning x-ray microscope - potential realizations and applications,” in [Ash 1980], 365-391.
[Spiller 1984] Spiller, E., “A scanning soft x-ray microscope using normal incidence mirrors,” in [Schmahl 1984], 226-231.Google Scholar
[Spiller 1993] Spiller, E., “Early history of x-ray lithography at IBM,” IBM J. Res. Dev. 37, 291-297 (1993).CrossRefGoogle Scholar
[Spiller 1994] Spiller, E., Soft X-ray Optics, SPIE (1994).CrossRefGoogle Scholar
[Spinks 1990] Spinks, J. W. T., and Woods, R. J., An Introduction to Radiation Chemistry, Wiley-Interscience, third edition (1990).Google Scholar
[Stampanoni 2010] Stampanoni, M., et al., “Phase-contrast tomography at the nanoscale using hard x rays,” Phys. Rev. B 81, 140105 (2010).CrossRefGoogle Scholar
[Stein 2002] Stein, A. G. “Focusing optics for soft and hard x-rays: Fabrication, replication and simulations,” PhD thesis, Department of Physics and Astronomy, Stony Brook University, (2002).Google Scholar
[Steinbrecht 1987] Steinbrecht, R. A. and Zierold, K., eds., Cryotechniques in Biological Electron Microscopy, Springer-Verlag (1987).CrossRefGoogle Scholar
[Steinbrener 2010] Steinbrener, J., et al., “Data preparation and evaluation techniques for x-ray diffraction microscopy,” Opt. Express 18, 18598-18614 (2010).CrossRefGoogle ScholarPubMed
[Stenström 1919] Stenström, W. “Experimentelle Un-tersuchungen der Röntgenspektra,” PhD thesis, Mathematisch-Naturwissenschaft-Lichen, (1919).Google Scholar
[Stock 2008] Stock, S. R., MicroComputed Tomography: Methodology and Applications, CRC Press (2008).Google Scholar
[Stockmar 2013] Stockmar, M., et al., “Near-field ptychog-raphy: phase retrieval for inline holography using a structured illumination,” Sci. Rep. 3, 1927 (2013).CrossRefGoogle ScholarPubMed
[Stöhr 1992] Stöhr, J., NEXAFS Spectroscopy, Springer Verlag (1992).CrossRefGoogle Scholar
[Stöhr 1993] Stöhr, J., et al., “Element-specific magnetic microscopy with circularly polarized x-rays,” Science 259, 658-661 (1993).CrossRefGoogle Scholar
[Stöhr 2006] Stöhr, J. and Siegmann, H. C., Magnetism: From Fundamentals to Nanoscale Dynamics, Springer-Verlag (2006).Google Scholar
[Stoll 2004] Stoll, H., et al., “High-resolution imaging of fast magnetization dynamics in magnetic nanostructures,” Appl. Phys. Lett. 84, 3328-3330 (2004).CrossRefGoogle Scholar
[Stoll 2015] Stoll, H., et al., “Imaging spin dynamics on the nanoscale using x-ray microscopy,” Front. Phys. 3, 26 (2015).CrossRefGoogle Scholar
[Strehl 1895] Strehl, K., “Aplanatische und fehlerhafte ab-bildung im fernrohr,” Zeitschrift für Instrumentenkunde 15, 362-370 (1895).Google Scholar
[Strehl 1902] Strehl, K., “Ueber Luftschlieren und Zonen-fehler,” Zeitschrift für Instrumentenkunde 22, 213-217 (1902).Google Scholar
[Strelnikova 2017] Strelnikova, N., et al., “Live cell x-ray imaging of autophagic vacuoles formation and chromatin dynamics in fission yeast,” Sci. Rep. 7, 13775 (2017).CrossRefGoogle ScholarPubMed
[Streubel 2015] Streubel, R., et al., “Retrieving spin textures on curved magnetic thin films with full-field soft x-ray microscopies,” Nature Communications 6, 7612 (2015).CrossRefGoogle ScholarPubMed
[Stroke 1964] Stroke, G. W. and Falconer, D. G., “Attainment of high resolutions in wavefront-reconstruction imaging,” Phys. Lett. 13, 306-309 (1964).CrossRefGoogle Scholar
[Stroke 1965a] Stroke, G. W., “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201-203 (1965).CrossRefGoogle Scholar
[Stroke 1965b] Stroke, G. W., et al., “Resolution retrieving compensation of source effects by correlation reconstruction in high resolution holography,” Phys. Lett. 18, 274-275 (1965).CrossRefGoogle Scholar
[Stroke 1966] Stroke, G. W., “Attainment of high resolutions in image-forming x-ray microscopy with ‘lensless’ Fourier-transform holograms and correlative source-effect compensation,” in Castaing, R., et al., eds., Optique des Rayons X et Microanalyse, 30-46, Hermann, (1966).Google Scholar
[Strüder 2016] Strüder, L., “High speed imaging and spectroscopy with low energy x-rays,” in [Jaeschke 2016], 1055-1090.Google Scholar
[Stuckelberger 2017] Stuckelberger, M., et al., “Engineering solar cells based on correlative x-ray microscopy,” J. Mater. Res. 32, 1-30 (2017).CrossRefGoogle Scholar
[Stumm von Bordwehr 1989] Stumm von Bordwehr, R., “A history of x-ray absorption fine structure,” Annales de Physique 14, 377-465 (1989).CrossRefGoogle Scholar
[Suckewer 1985] Suckewer, S., et al., “Amplification of stimulated soft x-ray emission in a confined plasma column,” Phys. Rev. Lett. 55, 1753-1756 (1985).CrossRefGoogle Scholar
[Sugisaki 1968] Sugisaki, M., et al., “Calorimetric study of the glassy state. IV. Heat capacities of glassy water and cubic ice,” Bull. Chem. Soc. Japan 41, 2591-2599 (1968).CrossRefGoogle Scholar
[Sullivan 2014] Sullivan, S. Z., et al., “High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories,” Opt. Express 22, 24224-24234 (2014).CrossRefGoogle ScholarPubMed
[Sun 1993] Sun, S., et al., “Water distribution of hydrated biological specimens by valence electron energy loss spectroscopy,” Ultramicroscopy 50, 127-139 (1993).CrossRefGoogle ScholarPubMed
[Sun 2012] Sun, T., et al., “Three-dimensional coherent x-ray surface scattering imaging near total external reflection,” Nature Photonics 6, 586-590 (2012).CrossRefGoogle Scholar
[Sun 2015] Sun, Y., et al., “Optimizing detector geometry for trace element mapping by x-ray fluorescence,” Ultra-microscopy 152, 44-56 (2015).Google ScholarPubMed
[Sun 2018] Sun, Z., et al., “Necessary experimental conditions for single-shot diffraction imaging of DNA-based structures with x-ray free-electron lasers,” ACS Nano 12, 7509-7518 (2018).CrossRefGoogle ScholarPubMed
[Sung 2013] Sung, Y. and Barbastathis, G., “Rytov approximation for x-ray phase imaging,” Opt. Express 21, 2674-2682 (2013).Google ScholarPubMed
[Susini 1995a] Susini, J., “Design parameters for hard x-ray mirrors: the European Synchroton Radiation Facility case,” Opt. Eng. 34, 361 (1995).CrossRefGoogle Scholar
[Susini 1995b] Susini, J., et al., “Compact active/adaptive x-ray mirror: bimorph piezoelectric flexible mirror,” Rev. Sci. Inst. 66, 2229-2231 (1995).CrossRefGoogle Scholar
[Susini 2003] Susini, J., et al., “7th international conference on x-ray microscopy: preface,” Journal de Physique IV 104, V (2003).Google Scholar
[Sutter 2010] Sutter, J. P., et al., “Geometrical and wave-optical effects on the performance of a bent-crystal dispersive x-ray spectrometer,” Nucl. Inst. Meth. Phys. Res. A 621, 627-636 (2010).CrossRefGoogle Scholar
[Sutton 1991] Sutton, M., et al., “Observation of speckle by diffraction with coherent x-rays,” Nature 352, 608-610 (1991).CrossRefGoogle Scholar
[Suzuki 2014] Suzuki, A., et al., “High-resolution mul-tislice x-ray ptychography of extended thick objects,” Phys. Rev. Lett. 112, 053903 (2014).CrossRefGoogle ScholarPubMed
[Svergun 2003] Svergun, D. I. and Koch, M., “Small-angle scattering studies of biological macromolecules in solution,” Rep. Prog. Phys. 66, 1735-1782 (2003).CrossRefGoogle Scholar
[Szlachetko 2010] Szlachetko, J., et al., “Wavelength-dispersive spectrometer for x-ray microfluorescence analysis at the x-ray microscopy beamline ID21 (ESRF),” J. Synch. Rad. 17, 400-408 (2010).CrossRefGoogle Scholar
[Taha 2015] Taha, A. A., “Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool,” BMC Medical Imaging 15, 1-28 (2015).CrossRefGoogle ScholarPubMed
[Takahashi 2008] Takahashi, Y., et al., “Element-specific hard x-ray diffraction microscopy,” Phys. Rev. B 78 (2008).CrossRefGoogle Scholar
[Takahashi 2009] Takahashi, Y., et al., “Feasibility study of high-resolution coherent diffraction microscopy using synchrotron x rays focused by Kirkpatrick-Baez mirrors,” J. Appl. Phys. 105, 083106 (2009).CrossRefGoogle Scholar
[Takayama 2015] Takayama, Y., et al., “Coherent x-ray diffraction imaging of chloroplasts from Cyanidioschy-zon merolaeby using x-ray free electron laser,” Plant Cell Physiol. 56, 1272-1286 (2015).CrossRefGoogle ScholarPubMed
[Takeichi 2016] Takeichi, Y., et al., “Design and performance of a compact scanning transmission x-ray microscope at the Photon Factory,” Rev. Sci. Inst. 87, 013704 (2016).CrossRefGoogle ScholarPubMed
[Takeuchi 2009] Takeuchi, A., et al., “Confocal full-field x-ray microscope for novel three-dimensional x-ray imaging,” J. Synch. Rad. 16, 616-621 (2009).CrossRefGoogle ScholarPubMed
[Takman 2007] Takman, P. A. C., et al., “High-resolution compact x-ray microscopy,” J. Microsc. 226, 175-181 (2007).CrossRefGoogle ScholarPubMed
[Talbot 1836] Talbot, H. F., “LXXVI. Facts relating to optical science. No. IV,” Phil. Mag. 9, 401-407 (1836).Google Scholar
[Talmon 1984] Talmon, Y., “Radiation damage to organic inclusions in ice,” Ultramicroscopy 14, 305-315 (1984).CrossRefGoogle Scholar
[Talmon 1986] Talmon, Y., et al., “Electron-beam radiation-damage to organic inclusions in vitreous, cubic, and hexagonal ice,” J. Microsc. 141, 375-384 (1986).CrossRefGoogle Scholar
[Tammann 1898] Tammann, G., “Ueber die Abhängigkeit der Zahl der Kerne, welche sich in verschiedenen un-terkühlten Flüssigkeiten bilden, von der Temperatur,” Zeitschrift für Physikalische Chemie 25, 441-479 (1898).Google Scholar
[Tanuma 1988] Tanuma, S., et al., “Calculations of electron inelastic mean free paths for 31 materials,” Surf. In-terf. Anal. 11, 577-589 (1988).Google Scholar
[Tanuma 2011] Tanuma, S., et al., “Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range,” Surf. Interf. Anal. 43, 689-713 (2011).CrossRefGoogle Scholar
[Tarantola 2005] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial and Applied Mathematics (2005).Google Scholar
[Tatarski 1961] Tatarski, V., Wave Propagation in a Turbulent Medium, McGraw-Hill (1961).CrossRefGoogle Scholar
[Tatchyn 1982] Tatchyn, R., et al., “Outline of a variational formulation of zone-plate theory,” J. Opt. Soc. Am. 72, 1630-1638 (1982).Google Scholar
[Tatchyn 1984] Tatchyn, R., et al., “The constant-thickness zone plate as a variational problem,” Optica Acta 31, 729-733 (1984).CrossRefGoogle Scholar
[Taylor 1973] Taylor, K. A. and Glaeser, R. M., “Hydrophilic support films of controlled thickness and composition,” Rev. Sci. Inst. 44, 1546-1547 (1973).CrossRefGoogle ScholarPubMed
[Taylor 1974] Taylor, K. and Glaeser, R., “Electron diffraction of frozen, hydrated protein crystals,” Science 106, 1036-1037 (1974).Google Scholar
[Taylor 1978] Taylor, K. A., “Structure determination of frozen, hydrated, crystalline biological specimens,” J. Mi-crosc. 112, 115-125 (1978).Google ScholarPubMed
[Taylor 2008] Taylor, K. A. and Glaeser, R. M., “Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future,” J. Struct. Bio. 163, 214-223 (2008).CrossRefGoogle Scholar
[Temple-Boyer 1998] Temple-Boyer, P., et al., “Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia,” J. Vac. Sci. Tech. A 16, 2003-2007 (1998).CrossRefGoogle Scholar
[Tennant 1990] Tennant, D. M., et al., “High resolution germanium zone plates and apertures for soft x-ray focalom-etry,” J. Vac. Sci. Tech. B 8, 1970-1974 (1990).CrossRefGoogle Scholar
[Teo 1986] Teo, B. K., EXAFS: Basic Principles and Data Analysis, Springer (1986).CrossRefGoogle Scholar
[Textor 2018] Textor, M. and de Jonge, N., “Strategies for preparing graphene liquid cells for transmission electron microscopy,” Nano Lett. 18, 3313-3321 (2018).CrossRefGoogle ScholarPubMed
[Thacker 2009] Thacker, S. C., et al., “Low-afterglow CsI:Tl microcolumnar films for small animal high-speed mi-croCT,” Nucl. Inst. Meth. Phys. Res. A 604, 89-92 (2009).CrossRefGoogle Scholar
[Thibault 2006] Thibault, P., et al., “Reconstruction of a yeast cell from x-ray diffraction data,” Acta Cryst. A 62, 248-261 (2006).CrossRefGoogle ScholarPubMed
[Thibault 2008] Thibault, P., et al., “High-resolution scanning x-ray diffraction microscopy,” Science 321, 379-382 (2008).CrossRefGoogle ScholarPubMed
[Thibault 2009a] Thibault, P., et al., “Probe retrieval in ptychographic coherent diffractive imaging,” Ultrami-croscopy 109, 338-343 (2009).Google ScholarPubMed
[Thibault 2009b] Thibault, P., et al., “Contrast mechanisms in scanning transmission x-ray microscopy,” Phys. Rev. A 80, 043813 (2009).CrossRefGoogle Scholar
[Thibault 2012] Thibault, P. and Guizar-Sicairos, M., “Maximum-likelihood refinement for coherent diffractive imaging,” New J. Phys. 14, 063004 (2012).CrossRefGoogle Scholar
[Thibault 2013] Thibault, P. and Menzel, A., “Reconstructing state mixtures from diffraction measurements,” Nature 494, 68-71 (2013).CrossRefGoogle ScholarPubMed
[Thieme 1988] Thieme, J., “Theoretical investigations of imaging properties of zone plates and zone plate systems using diffraction theory,” in [Sayre 1988], 70-79.Google Scholar
[Thieme 1998a] Thieme, J. and Niemeyer, J., “Interaction of colloidal soil particles, humic substances and cationic detergents studied by x-ray microscopy,” Prog. Colloid Polym. Sci. 111, 193-201 (1998).Google Scholar
[Thieme 1998b] Thieme, J., et al., eds., X-ray Microscopy and Spectromicroscopy, Springer-Verlag (1998).CrossRefGoogle Scholar
[Thieme 2007] Thieme, J., et al., “X-ray spectromicroscopy - a tool for environmental sciences,” Env. Sci. Tech. 41, 6885-6889 (2007).CrossRefGoogle ScholarPubMed
[Thole 1992] Thole, B. T., et al., “X-ray circular dichroism as a probe of orbital magnetization,” Phys. Rev. Lett. 68, 1943-1946 (1992).CrossRefGoogle ScholarPubMed
[Thurrowgood 2016] Thurrowgood, D., et al., “A hidden portrait by Edgar Degas,” Sci. Rep. 6, 29594 (2016).CrossRefGoogle ScholarPubMed
[Tibshirani 1996] Tibshirani, R., “Regression shrinkage and selection via the lasso,” J. Roy. Stat. Soc. B 59, 267-288 (1996).Google Scholar
[Tinone 1994a] Tinone, M. C. K., et al., “Site specific photochemical reaction by core electron excitation: carbon and oxygen K-edge fine structure of PMMA,” App. Surf. Sci. 79-80, 89-94 (1994).Google Scholar
[Tinone 1994b] Tinone, M. C. K., et al., “Inner-shell excitation and site specific fragmentation of poly(methylmethacrylate) thin film,” J. Chem. Phys. 100, 5988-5995 (1994).CrossRefGoogle Scholar
[Tinone 1995] Tinone, M. C. K., et al., “Photodecomposition of poly(methylmethacrylate) thin films by monochromatic soft x-ray radiation,” J. Vac. Sci. Tech. A 13, 1885-1892 (1995).CrossRefGoogle Scholar
[Tinone 1996] Tinone, M. C. K., et al., “Site specific photochemical reaction of PMMA and related polymers by inner shell electron excitation,” J. Electron Spect. Rel. Phe-nom. 80, 117-120 (1996).Google Scholar
[Titarenko 2010] Titarenko, S., et al., “A priori information in a regularized sinogram-based method for removing ring artefacts in tomography,” J. Synch. Rad. 17, 540-549 (2010).CrossRefGoogle Scholar
[Toivola 2003] Toivola, Y., et al., “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films,” J. Appl. Phys. 94, 6915-6922 (2003).CrossRefGoogle Scholar
[Tomboulian 1956] Tomboulian, D. H. and Hartman, P. L., “Spectral and angular distribution of ultraviolet radiation from the 300-MeV Cornell synchrotron,” Phys. Rev. 102, 1423-1447 (1956).CrossRefGoogle Scholar
[Tomie 1997] Tomie, T., “X-ray lens,” US Patent Office patent 5,594,773 (filed 1995, granted 1997).Google Scholar
[Tonomura 1993] Tonomura, A., Electron Holography, Springer-Verlag (1993).CrossRefGoogle Scholar
[Tripathi 2014] Tripathi, A., et al., “Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods,” Opt. Express 22, 1452-1466 (2014).CrossRefGoogle ScholarPubMed
[Trtik 2013] Trtik, P., et al., “Density mapping of hardened cement paste using ptychographic x-ray computed tomography,” Cement Concrete Compos. 36, 71-77 (2013).CrossRefGoogle Scholar
[Tsai 2016] Tsai, E. H. R., et al., “X-ray ptychography with extended depth of field,” Opt. Express 24, 29089-29108 (2016).CrossRefGoogle ScholarPubMed
[Tsai 2019] Tsai, E. H. R., et al., “Gridrec-MS: an algorithm for multi-slice tomography,” Opt. Lett. 44, 2181-2184 (2019).CrossRefGoogle ScholarPubMed
[Tschunko 1974] Tschunko, H. F., “Imaging performance of annular apertures,” App. Opt. 13, 1820-1823 (1974).Google ScholarPubMed
[Turner 2013] Turner, J. J., et al., “Lensless imaging of nanoporous glass with soft x-rays,” Phys. Lett. A 377, 1150-1153 (2013).CrossRefGoogle Scholar
[Tuy 1983] Tuy, H. K., “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math. 43, 546-552 (1983).CrossRefGoogle Scholar
[Twining 2003] Twining, B. S., et al., “Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe,” Anal. Chem. 75, 3806-3816 (2003).CrossRefGoogle ScholarPubMed
[Tylko 2006] Tylko, G., et al., “X-ray microanalysis of biological material in the frozen-hydrated state by PIXE,” Microsc. Res. Tech. 70, 55-68 (2006).Google Scholar
[Uchida 2009] Uchida, M., et al., “Soft x-ray tomography of phenotypic switching and the cellular response to antifun-gal peptoids in Candida albicans,” Proc. Nat. Acad. Sci. 106, 19375-19380 (2009).CrossRefGoogle Scholar
[Uesugi 2006] Uesugi, K., et al., “Development of micro-tomography system with Fresnel zone plate optics at SPring-8,” Proc. SPIE 6318, 63181F (2006).CrossRefGoogle Scholar
[Ulvestad 2015a] Ulvestad, A., et al., “In situ strain evolution during a disconnection event in a battery nanoparti-cle,” Phys. Chem. Chem. Phys. 17, 10551-10555 (2015).CrossRefGoogle Scholar
[Ulvestad 2015b] Ulvestad, A., et al., “Topological defect dynamics in operando battery nanoparticles,” Science 348, 1344-1347 (2015).CrossRefGoogle ScholarPubMed
[Underwood 1979] Underwood, J. H., et al., “Layered synthetic microstructures: properties and applications in x-ray astronomy,” Proc. SPIE 184, 123-130 (1979).Google Scholar
[Underwood 1981a] Underwood, J. H. and Barbee, T. W., “Soft x-ray imaging with a normal incidence mirror,” Nature 294, 429-431 (1981).CrossRefGoogle Scholar
[Underwood 1981b] Underwood, J. H. and Barbee Jr., T. W., “Layered synthetic microstructures as Bragg diffractors for x rays and extreme ultraviolet: theory and predicted performance,” App. Opt. 20, 3027-3034 (1981).Google ScholarPubMed
[Urquhart 1999] Urquhart, S. G., et al., “NEXAFS spectro-microscopy of polymers: overview and quantitative analysis of polyurethane polymers,” J. Electron Spect. Rel. Phe-nom. 100, 119-135 (1999).Google Scholar
[Urquhart 2002] Urquhart, S. G. and Ade, H., “Trends in the carbonyl core (C1s,O1s)? p*C=O transition in the near edge x-ray absorption fine structure spectra of organic molecules,” J. Phys. Chem. B 106, 8531-8538 (2002).CrossRefGoogle Scholar
[Urquhart 2018] Urquhart, S. and Hitchcock, A. P., “Proceedings of the 14th international conference on x-ray microscopy (XRM2018),” Microsc. Microanal. 24 (S2), f1- f20 (2018).Google Scholar
[Valentin 2007] Valentin, J., “The 2007 Recommendations of the International Commission on Radiological Protection,” Ann. ICRP 37, 1-330 (2007).Google Scholar
[van Cittert 1939] van Cittert, P. H., “Kohaerenz-probleme,” Physica 6, 1129-1138 (1939).CrossRefGoogle Scholar
[van Cittert 1958] van Cittert, P. H., “Degree of coherence,” Physica 24, 505-507 (1958).CrossRefGoogle Scholar
[van der Laan 1986] van der Laan, G., et al., “Experimental proof of magnetic x-ray dichroism,” Phys. Rev. B 34, 6529-6531 (1986).CrossRefGoogle ScholarPubMed
[van der Schot 2015] van der Schot, G., et al., “Imaging single cells in a beam of live cyanobacteria with an x-ray laser,” Nature Comm. 6, 1-9 (2015).CrossRefGoogle Scholar
[van der Veen 2004] van der Veen, F. and Pfeiffer, F., “Coherent x-ray scattering,” J. Phys. Condensed Matter 16, 5003-5030 (2004).Google Scholar
[Van Grieken 2002] Van Grieken, R. E. and Markowicz, A. A., Handbook of X-ray Spectrometry, Marcel Dekker, second edition (2002).Google Scholar
[Van Harreveld 1964] Van Harreveld, A. and Crowell, J., “Electron microscopy after rapid freezing on a metal surface and substitution fixation,” Anat. Rec. 149, 381-385 (1964).CrossRefGoogle Scholar
[Van Harreveld 1974] Van Harreveld, A., et al., “Rapid freezing and electron microscopy for the arrest of physiological processes,” J. Microsc. 100, 189-198 (1974).Google ScholarPubMed
[van Heel 2000] van Heel, M., et al., “Single-particle electron cryo-microscopy: towards atomic resolution,” Q. Rev. Biophys. 33, 307-369 (2000).CrossRefGoogle ScholarPubMed
[van Heel 2005] van Heel, M. and Schatz, M., “Fourier shell correlation threshold criteria,” J. Struct. Bio. 151, 250-262 (2005).CrossRefGoogle ScholarPubMed
[Van Roey 1981] Van Roey, J., et al., “Beam-propagation method: Analysis and assessment,” J. Opt. Soc. Am. 71, 803-810 (1981).CrossRefGoogle Scholar
[Vartanyants 1997] Vartanyants, I. A., et al., “Reconstruction of surface morphology from coherent x-ray reflectivity,” Phys. Rev. B 55, 13193-13202 (1997).CrossRefGoogle Scholar
[Vartanyants 2001] Vartanyants, I. A. and Robinson, I. K., “Partial coherence effects on the imaging of small crystals using coherent x-ray diffraction,” J. Phys. Condensed Matter 13, 10593-10611 (2001).CrossRefGoogle Scholar
[Vartanyants 2016] Vartanyants, I. A. and Singer, A., “Coherence properties of third-generation synchrotron sources and free-electron lasers,” in [Jaeschke 2016], 821-863.Google Scholar
[Vartiainen 2015] Vartiainen, I., et al., “Artifact characterization and reduction in scanning x-ray Zernike phase contrast microscopy,” Opt. Express 23, 13278-13293 (2015).CrossRefGoogle ScholarPubMed
[Vaughan 2010] Vaughan, G. B. M., et al., “X-ray trans-focators: focusing devices based on compound refractive lenses,” J. Synch. Rad. 18, 125-133 (2010).Google ScholarPubMed
[Vekemans 2004] Vekemans, B., et al., “Processing of three-dimensional microscopic x-ray fluorescence data,” J. Anal. Atomic Spectr. 19, 1302-1308 (2004).CrossRefGoogle Scholar
[Vernon 1993] Vernon, S. P., et al., “Chirped multilayer coatings for increased x-ray throughput,” Opt. Lett. 18, 672-674 (1993).CrossRefGoogle ScholarPubMed
[Vescovi 2018] Vescovi, R., et al., “Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron x-ray beams,” J. Synch. Rad. 25, 1478-1489 (2018).CrossRefGoogle ScholarPubMed
[Vespa 2007] Vespa, M., et al., “Determination of the elemental distribution and chemical speciation in highly heterogeneous cementitious materials using synchrotron-based micro-spectroscopic techniques,” Cement Concrete Res. 37, 1473-1482 (2007).CrossRefGoogle Scholar
[Vila-Comamala 2011] Vila-Comamala, J., et al., “Characterization of high-resolution diffractive x-ray optics by ptychographic coherent diffractive imaging,” Opt. Express 19, 21333-21344 (2011).CrossRefGoogle ScholarPubMed
[Vila-Comamala 2013] Vila-Comamala, J., et al., “Angular spectrum simulation of x-ray focusing by Fresnel zone plates,” J. Synch. Rad. 20, 397-404 (2013).CrossRefGoogle ScholarPubMed
[Villanova 2017] Villanova, J., et al., “Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials science,” Materials Today 20, 354-359 (2017).CrossRefGoogle Scholar
[Villanueva-Perez 2016] Villanueva-Perez, P., et al., “Signal-to-noise criterion for free-propagation imaging techniques at free-electron lasers and synchrotrons,” Opt. Express 24, 3189-3201 (2016).CrossRefGoogle ScholarPubMed
[Villar 2014] Villar, F., et al., “Nanopositioning for the ID16A-NI endstation,” in MEDSI Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. Australian Synchrotron (2014).Google Scholar
[Vincze 1995a] Vincze, L., et al., “A general Monte Carlo simulation of energy-dispersive x-ray fluorescence spectrometers. Part 3. Polarized polychromatic radiation, homogeneous samples,” Spectrochimica Acta B 50, 1481-1500 (1995).Google Scholar
[Vincze 1995b] Vincze, L., et al., “A general Monte Carlo simulation of ED-XRF spectrometers. II: Polarized monochromatic radiation, homogeneous samples,” Spec-trochimica Acta B 50, 127-147 (1995).Google Scholar
[Vincze 1999] Vincze, L., et al., “Monte Carlo simulation of x-ray fluorescence spectra: Part 4. Photon scattering at high x-ray energies,” Spectrochimica Acta B 54, 1711-1722 (1999).CrossRefGoogle Scholar
[Vincze 2004] Vincze, L., et al., “Three-dimensional trace element analysis by confocal x-ray microfluorescence imaging,” Anal. Chem. 76, 6786-6791 (2004).CrossRefGoogle ScholarPubMed
[Vine 2012] Vine, D. J., et al., “Simultaneous x-ray fluorescence and ptychographic microscopy of Cyclotella meneghiniana,” Opt. Express 20, 18287-18296 (2012).CrossRefGoogle ScholarPubMed
[Vinogradov 1977] Vinogradov, A. V. and Zeldovich, B. Y., “X-ray and far uv multilayer mirrors: principles and possibilities,” App. Opt. 16, 89-93 (1977).Google ScholarPubMed
[Vo 2014] Vo, N. T., et al., “Reliable method for calculating the center of rotation in parallel-beam tomography,” Opt. Express 22, 19078-19086 (2014).CrossRefGoogle ScholarPubMed
[Voelz 2009] Voelz, D. G. and Roggemann, M. C., “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” App. Opt. 48, 6132-6142 (2009).Google ScholarPubMed
[Vogel 1986] Vogel, R. H., et al., “Envelope structure of Semliki Forest virus reconstructed from cryo-electron mi-crographs,” Nature 320, 533-535 (1986).CrossRefGoogle Scholar
[Vogt 2001] Vogt, S., et al., “Dark field x-ray microscopy: the effects of condenser/detector aperture,” Ultrami-croscopy 87, 25-44 (2001).Google ScholarPubMed
[Vogt 2003a] Vogt, S., “MAPS: a set of software tools for analysis and visualization of 3D x-ray fluorescence data sets,” Journal de Physique IV 104, 635-638 (2003).Google Scholar
[Vogt 2003b] Vogt, S., et al., “Data analysis for x-ray fluorescence imaging,” Journal de Physique IV 104, 617-622 (2003).Google Scholar
[Volkov 2003] Volkov, V. V. and Zhu, Y., “Deterministic phase unwrapping in the presence of noise,” Opt. Lett. 28, 2156-2158 (2003).CrossRefGoogle ScholarPubMed
[von Ardenne 1938] von Ardenne, M., “Das Elektronen-Rastermikroskop. Praktische Ausführung,” Zeitschrift für technische Physik 19, 407-416 (1938).Google Scholar
[von Ardenne 1939] von Ardenne, M., “Zur Leis-tungsfüahigkeit des Electronen-Schattenmikroskopes und über ein Röntgenstrahlen-Schattenmikoroskop,” Natur-wissenschaften 27, 485-486 (1939).CrossRefGoogle Scholar
[Voropaev 2016] Voropaev, A., et al., “Direct Fourier inversion reconstruction algorithm for computed laminog-raphy,” IEEE Trans. Image Proc. 25, 2368-2378 (2016).CrossRefGoogle Scholar
[Voss 1992a] Voss, J., et al., “A scanning soft x-ray microscope with an ellipsoidal focusing mirror,” J. X-ray Sci. Tech. 3, 85-108 (1992).CrossRefGoogle ScholarPubMed
[Voss 1992b] Voss, J., et al., “Grazing incidence optics for soft x-ray microscopy,” Rev. Sci. Inst. 63, 569-575 (1992).CrossRefGoogle Scholar
[Voss 1997] Voss, J., “The scanning soft x-ray microscope at HASYLAB - imaging and spectroscopy of photoelectrons, photoluminescence, desorbed ions, reflected, scattered, and transmitted light,” J. Electron Spect. Rel. Phe-nom. 84, 29-44 (1997).Google Scholar
[Vyvenko 2002] Vyvenko, O. F., et al., “X-ray beam induced current - a synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon,” J. Appl. Phys. 91, 3614-3617 (2002).CrossRefGoogle Scholar
[Wagner 2011] Wagner, W., et al., “New equations for the sublimation pressure and melting pressure of H2O ice Ih,” J. Phys. Chem. Ref. Data 40, 043103 (2011).CrossRefGoogle Scholar
[Wäldchen 2015] Wäldchen, S., et al., “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).CrossRefGoogle ScholarPubMed
[Wall 1974] Wall, J., et al., “The collection of scattered electrons in dark field electron microscopy: II. Inelastic scattering,” Optik 39, 359-374 (1974).Google Scholar
[Wallander 2017] Wallander, H. and Wallentin, J., “Simulated sample heating from a nanofocused x-ray beam,” J. Synch. Rad. 24, 925-933 (2017).CrossRefGoogle ScholarPubMed
[Wallin 2008] Wallin, E. and Heijne, G. V., “Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms,” Protein Sci. 7, 1029-1038 (2008).CrossRefGoogle Scholar
[Wang 1985] Wang, B.-C., “Resolution of phase ambiguity in macromolecular crystallography,” Meth. Enzymology 115, 90-112 (1985).Google ScholarPubMed
[Wang 1998] Wang, Y. and Jacobsen, C., “A numerical study of resolution and contrast in soft x-ray contact microscopy,” J. Microsc. 191, 159-169 (1998).CrossRefGoogle ScholarPubMed
[Wang 2000] Wang, Y., et al., “Soft x-ray microscopy with a cryo STXM: II. Tomography,” J. Microsc. 197, 80-93 (2000).CrossRefGoogle Scholar
[Wang 2002] Wang, S., et al., “A transmission x-ray microscope (TXM) for non-destructive 3D imaging of ICs at sub-100 nm resolution,” in Boit, C., ed., Proceedings from the 28th International Symposium for Testing and Failure Analysis, 227-233 (2002).
[Wang 2003] Wang, Y., et al., “Achromatic Fresnel optics for wideband extreme-ultraviolet and x-ray imaging,” Nature 424, 50-53 (2003).CrossRefGoogle ScholarPubMed
[Wang 2005] Wang, C., et al., “Soft x-ray resonant reflectivity of low-Z material thin films,” Appl. Phys. Lett. 87, 214109 (2005).CrossRefGoogle Scholar
[Wang 2007] Wang, C., et al., “Resonant soft x-ray reflectivity of organic thin films,” J. Vac. Sci. Tech. A 25, 575-586 (2007).CrossRefGoogle Scholar
[Wang 2009a] Wang, F., et al., “Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS),” Ultramicroscopy 109, 1245-1249 (2009).CrossRefGoogle Scholar
[Wang 2009b] Wang, J., et al., “Radiation damage in soft x-ray microscopy,” J. Electron Spect. Rel. Phenom. 170, 25-36 (2009).CrossRefGoogle Scholar
[Wang 2011] Wang, G., et al., “Non-uniqueness and instability of ‘ankylography’,” Nature 480, E2-3 (2011).CrossRefGoogle Scholar
[Wang 2012] Wang, J., et al., “Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution,” Appl. Phys. Lett. 100, 143107 (2012).CrossRefGoogle Scholar
[Wang 2013] Wang, Z., et al., “Advantages of intermediate x-ray energies in Zernike phase contrast x-ray microscopy,” Biotech. Adv. 31, 387-392 (2013).CrossRefGoogle ScholarPubMed
[Ward 2013] Ward, J., et al., “Rapid and accurate analysis of an x-ray fluorescence microscopy data set through Gaussian mixture-based soft clustering methods,” Microsc. Mi-croanal. 19, 1281-1289 (2013).Google ScholarPubMed
[Warkentin 2010] Warkentin, M. and Thorne, R. E., “Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements,” Acta Cryst. D 66, 1092-1100 (2010).CrossRefGoogle ScholarPubMed
[Warwick 2002] Warwick, T., et al., “A new bend-magnet beamline for scanning transmission x-ray microscopy at the Advanced Light Source,” J. Synch. Rad. 9, 254-257 (2002).CrossRefGoogle ScholarPubMed
[Washburn 1933] Washburn, E. W., et al., “The isotopic fractionation of water,” J. Chem. Phys. 1, 288 (1933).CrossRefGoogle Scholar
[Watanabe 2013] Watanabe, S., et al., “Ultrafast endocytosis at mouse hippocampal synapses,” Nature 504, 242-247 (2013).CrossRefGoogle ScholarPubMed
[Watts 2011a] Watts, B., et al., “Mapping of domain orientation and molecular order in polycrystalline semi-conducting polymer films with soft x-ray microscopy,” Adv. Func. Mater. 21, 1122-1131 (2011).CrossRefGoogle Scholar
[Watts 2011b] Watts, B., et al., “Calibrated NEXAFS spectra of common conjugated polymers,” J. Chem. Phys. 134, 024702 (2011).CrossRefGoogle ScholarPubMed
[Watts 2012] Watts, B. and Ade, H. W., “NEXAFS imaging of synthetic organic materials,” Materials Today 15, 148-157 (2012).CrossRefGoogle Scholar
[Watts 2014] Watts, B., “Calculation of the Kramers-Kronig transform of x-ray spectra by a piecewise Laurent polynomial method,” Opt. Express 22, 23628-23639 (2014).CrossRefGoogle ScholarPubMed
[Weast 1975] Weast, R. C., ed., CRC Handbook of Chemistry and Physics, CRC Press, 56th edition (1975).Google Scholar
[Wei 2011] Wei, H., “Fundamental limits of ‘ankylography’ due to dimensional deficiency,” Nature 480, E1 (2011).CrossRefGoogle ScholarPubMed
[Weierstall 2014] Weierstall, U., et al., “Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography,” Nature Comm. 5, 3309 (2014).CrossRefGoogle ScholarPubMed
[Weinhausen 2013] Weinhausen, B. and Köster, S., “Mi-crofluidic devices for x-ray studies on hydrated cells,” Lab on a Chip 13, 212-215 (2013).CrossRefGoogle ScholarPubMed
[Weinhausen 2014] Weinhausen, B., et al., “Scanning x-ray nanodiffraction on living eukaryotic cells in microfluidic environments,” Phys. Rev. Lett. 112, 088102 (2014).CrossRefGoogle Scholar
[Weiss 1955] Weiss, J. and Bernstein, W., “Energy required to produce one ion pair for several gases,” Phys. Rev. 98, 1828-1831 (1955).CrossRefGoogle Scholar
[Weiß 2000] Weiß, D., et al., “Computed tomography of cryogenic biological specimens based on x-ray microscopic images,” Ultramicroscopy 84, 185-197 (2000).CrossRefGoogle ScholarPubMed
[Weiss 2017] Weiss, J. T., et al., “High dynamic range x-ray detector pixel architectures utilizing charge removal,” IEEE Trans. Nucl. Sci. 64, 1101-1107 (2017).CrossRefGoogle Scholar
[Weitkamp 2004] Weitkamp, T., et al., “Hard x-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE 5535, 137-142 (2004).Google Scholar
[Weitkamp 2005] Weitkamp, T., et al., “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296-6304 (2005).CrossRefGoogle ScholarPubMed
[Weker 2014] Weker, J. N., et al., “In situ nanotomography and operando transmission x-ray microscopy of micron-sized Ge particles,” Energy Env. Sci. 7, 2771 (2014).CrossRefGoogle Scholar
[Weker 2016] Weker, J. N., et al., “In situ x-ray-based imaging of nano materials,” Curr. Opin. Chem. Eng. 12, 14-21 (2016).CrossRefGoogle Scholar
[Weker 2017] Weker, J. N., et al., “Operando spectroscopic microscopy of LiCoO2 cathodes outside standard operating potentials,” Electrochimica Acta 247, 977-982 (2017).Google Scholar
[Welford 1960a] Welford, W. T., “Length measurement at the optical resolution limit by scanning microscopy,” in Mollet, P., ed., Optics in Metrology, 85-91, Pergamon Press, Inc., (1960).Google Scholar
[Welford 1960b] Welford, W. T., “Use of annular apertures to increase focal depth,” J. Opt. Soc. Am. 50, 749-753 (1960).CrossRefGoogle Scholar
[Wessels 2014] Wessels, P., et al., “Time-resolved soft x-ray microscopy of magnetic nanostructures at the P04 beam-line at PETRA III,” J. Phys. Conf. Ser. 499, 012009 (2014).CrossRefGoogle Scholar
[Westcott 1948] Westcott, C. H., “A study of expected loss rates in the counting of particles from pulsed sources,” Proc. Roy. Soc. Lon. A 194, 508-526 (1948).Google Scholar
[Whitaker 1999] Whitaker, M., “The Bohr-Moseley synthesis and a simple model for atomic x-ray energies,” Eur. J. Phys. 20, 213 (1999).CrossRefGoogle Scholar
[Whitehead 2009] Whitehead, L. W., et al., “Diffractive imaging using partially coherent x rays,” Phys. Rev. Lett. 103, 243902 (2009).CrossRefGoogle ScholarPubMed
[Wiener 1949] Wiener, N., Extrapolation, Interpolation and Smoothing of Stationary Time Series, Wiley (1949).Google Scholar
[Wierman 2013] Wierman, J. L., et al., “Graphene as a protein crystal mounting material to reduce background scatter,” J. Appl. Cryst. 46, 1501-1507 (2013).CrossRefGoogle ScholarPubMed
[Wigner 1932] Wigner, E., “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749-759 (1932).CrossRefGoogle Scholar
[Wildenschild 2013] Wildenschild, D. and Sheppard, A. P., “X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems,” Advances in Water Resources 51, 217-246 (2013).CrossRefGoogle Scholar
[Wilhein 2001a] Wilhein, T., et al., “Differential interference contrast x-ray microscopy with submicron resolution,” Appl. Phys. Lett. 78, 2082-2084 (2001).CrossRefGoogle Scholar
[Wilhein 2001b] Wilhein, T., et al., “Two zone plate interference contrast microscopy at 4 kev photon energy,” Optics Comm. 193, 19-26 (2001).CrossRefGoogle Scholar
[Wilk 2001] Wilk, G. D., et al., “High-k gate dielectrics: current status and materials properties considerations,” J. Appl. Phys. 89, 5243-5275 (2001).CrossRefGoogle Scholar
[Wilke 2008] Wilke, M., et al., “The origin of S4+ detected in silicate glasses by XANES,” Am. Mineral. 93, 235-240 (2008).CrossRefGoogle Scholar
[Wilkins 2014] Wilkins, S. W., et al., “On the evolution and relative merits of hard x-ray phase-contrast imaging methods,” Phil. Trans. Roy. Soc. Lon. A 372, 20130021 (2014).CrossRefGoogle ScholarPubMed
[Williams 1949] Williams, C. R., “Radiation exposures from the use of shoe-fitting fluoroscopes,” New Eng. J. Med. 241, 333-335 (1949).CrossRefGoogle ScholarPubMed
[Williams 1993] Williams, S., et al., “Measurements of wet metaphase chromosomes in the scanning transmission x-ray microscope,” J. Microsc. 170, 155-165 (1993).CrossRefGoogle Scholar
[Williams 2003] Williams, G., et al., “Three-dimensional imaging of microstructure in Au nanocrystals,” Phys. Rev. Lett. 90, 175501 (2003).CrossRefGoogle ScholarPubMed
[Williams 2005] Williams, G. P., “Filling the THz gap - high power sources and applications,” Rep. Prog. Phys. 69, 301-326 (2005).Google Scholar
[Williams 2006] Williams, G. J., et al., “Fresnel coherent diffractive imaging,” Phys. Rev. Lett. 97, 025506 (2006).CrossRefGoogle ScholarPubMed
[Williams 2007a] Williams, G., et al., “Coherent diffractive imaging and partial coherence,” Phys. Rev. B 75, 104102 (2007).CrossRefGoogle Scholar
[Williams 2007b] Williams, G. J., et al., “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Cryst. A 63, 36-42 (2007).CrossRefGoogle ScholarPubMed
[Wilson 1979] Wilson, D., Supercold: An Introduction to Low Temperature Technology, Faber and Faber (1979).Google Scholar
[Wilson 1984] Wilson, T. and Sheppard, C., Theory and Practice of Scanning Optical Microscopy, Academic Press (1984).Google Scholar
[Winesett 1998] Winesett, D. A. and Ade, H., “Possible suppression of higher-order spectral contamination with a longitudinal single wire proportional counter and he-lium/oxygen gas filter,” in [Thieme 1998b], III-83.Google Scholar
[Winick 1981] Winick, H., et al., “Wiggler and undulator magnets,” Physics Today 34, 50-63 (1981).CrossRefGoogle Scholar
[Winkel 2008] Winkel, K., et al., “Water polyamorphism: reversibility and (dis)continuity,” J. Chem. Phys. 128, 044510 (2008).CrossRefGoogle ScholarPubMed
[Winn 2000] Winn, B., et al., “Illumination for coherent soft x-ray applications: the new X1A beamline at the NSLS,” J. Synch. Rad. 7, 395-404 (2000).CrossRefGoogle ScholarPubMed
[Wise 2016] Wise, A. M., et al., “Nanoscale chemical imaging of an individual catalyst particle with soft x-ray pty-chography,” ACS Catalysis 6, 2178-2181 (2016).CrossRefGoogle Scholar
[Wolff 1974] Wolff, R. S., “Measurement of the gas constants for various proportional-counter gas mixtures,” Nucl. Inst. Meth. 115, 461-463 (1974).CrossRefGoogle Scholar
[Wolter 1952] Wolter, H., “Spiegelsysteme streifenden Ein-falls als abbildende Optiken für Röntgenstrahlen,” Annalen der Physik 10, 94-114, 286 (1952).Google Scholar
[Wong 1990] Wong, J., et al., “YB66: a new soft-x-ray monochromator for synchrotron radiation,” Nucl. Inst. Meth. Phys. Res. A 291, 243-249 (1990).CrossRefGoogle Scholar
[Wong 1999] Wong, J., et al., “YB66 - a new soft x-ray monochromator for synchrotron radiation. II. Characterization,” J. Synch. Rad. 6, 1086-1095 (1999).CrossRefGoogle Scholar
[Woo 2016] Woo, S., et al., “Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets,” Nature Mater. 15, 501-506 (2016).CrossRefGoogle ScholarPubMed
[Wood 1898] Wood, R. W., “Phase-reversal zone-plates, and diffraction telescopes,” Phil. Mag. 45, 511-522 (1898).CrossRefGoogle Scholar
[Wu 2018] Wu, J., et al., “4D imaging of polymer electrolyte membrane fuel cell catalyst layers by soft x-ray spectro-tomography,” J. Power Sources 381, 72-83 (2018).CrossRefGoogle Scholar
[Wunderer 2015] Wunderer, C. B., et al., “The PERCIVAL soft x-ray imager,” J. Instrumentation 10, C02008 (2015).CrossRefGoogle Scholar
[Wyrwich 1958] Wyrwich, H. and Lenz, F., “Berechnung der differentiellen Wirkungsquerschnitte für die Streu-ung mittelschneller Elektronen an Atomen aus Hartree-Funktionen,” Zeitschrift für Naturforschung A 13, 515-523 (1958).CrossRefGoogle Scholar
[Xiao 2001] Xiao, H., et al., “Prolate spheroidal wavefunc-tions, quadrature and interpolation,” Inverse Probl. 17, 805-838 (2001).CrossRefGoogle Scholar
[Xiao 2005] Xiao, C., et al., “Cryo-electron microscopy of the giant mimivirus,” J. Molec. Bio. 353, 493-496 (2005).CrossRefGoogle ScholarPubMed
[Xiao 2009] Xiao, C., et al., “Structural studies of the giant mimivirus,” PLoS Biology 7, e92 (2009).CrossRefGoogle ScholarPubMed
[Xu 2012] Xu, F., et al., “Comparison of image quality in computed laminography and tomography,” Opt. Express 20, 794-806 (2012).Google ScholarPubMed
[Xu 2013] Xu, H., et al., “11th International Conference on X-ray Microscopy (XRM2012),” J. Phys. Conf. Ser. 463, 011001 (2013).CrossRefGoogle Scholar
[Yakovlev 2008] Yakovlev, S. and Libera, M., “Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope,” Micron 39, 734-740 (2008).CrossRefGoogle ScholarPubMed
[Yakovlev 2010] Yakovlev, S., et al., “Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy,” Ultramicroscopy 110, 866-876 (2010).CrossRefGoogle ScholarPubMed
[Yamada 2017] Yamada, J., et al., “Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope,” App. Opt. 56, 967-974 (2017).Google ScholarPubMed
[Yamamoto 1983] Yamamoto, K. and Taira, A., “Some improvements in the phase contrast microscope,” J. Microsc. 129, 49-62 (1983).CrossRefGoogle Scholar
[Yamamoto 1992] Yamamoto, M. and Namioka, T., “Layer-by-layer design method for soft-x-ray multilayers,” App. Opt. 31, 1622-1630 (1992).Google ScholarPubMed
[Yamamura 2003] Yamamura, K., et al., “Fabrication of elliptical mirror at nanometer-level accuracy for hard x-ray focusing by numerically controlled plasma chemical vaporization machining,” Rev. Sci. Inst. 74, 4549-4553 (2003).CrossRefGoogle Scholar
[Yamanaka 2014] Yamanaka, M., et al., “Introduction to super-resolution microscopy,” Microscopy 63, 177-192 (2014).CrossRefGoogle ScholarPubMed
[Yamauchi 2011] Yamauchi, K., et al., “Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrors,” J. Phys. Condensed Matter 23, 394206 (2011).CrossRefGoogle ScholarPubMed
[Yamauchi 2016] Yamauchi, K., et al., “Focusing mirror for coherent hard x-rays,” in [Jaeschke 2016], 927-956.Google Scholar
[Yan 2007] Yan, H., et al., “Takagi-Taupin description of x-ray dynamical diffraction from diffractive optics with large numerical aperture,” Phys. Rev. B 76, 115438 (2007).CrossRefGoogle Scholar
[Yan 2012] Yan, H. and Chu, Y. S., “Optimization of multilayer Laue lenses for a scanning x-ray microscope,” J. Synch. Rad. 20, 89-97 (2012).Google ScholarPubMed
[Yan 2013] Yan, H., et al., “Accurate and facile determination of the index of refraction of organic thin films near the carbon 1s absorption edge,” Phys. Rev. Lett. 110, 177401 (2013).CrossRefGoogle ScholarPubMed
[Yan 2014] Yan, H., et al., “Hard x-ray nanofocusing by multilayer Laue lenses,” J. Phys. D 47, 263001 (2014).CrossRefGoogle Scholar
[Yan 2017] Yan, H., et al., “Achieving diffraction-limited nanometer-scale x-ray point focus with two crossed multilayer Laue lenses: alignment challenges,” Opt. Express 25, 25234-25242 (2017).CrossRefGoogle ScholarPubMed
[Yan 2018] Yan, H., et al., “Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science,” Nano Futures 2, 011001 (2018).CrossRefGoogle Scholar
[Yang 1986] Yang, B. X., et al., “Variable pressure ion chamber for relative and absolute flux measurement,” Proc. SPIE 689, 34-7 (1986).Google Scholar
[Yang 1987a] Yang, B. X. and Kirz, J., “Extended x-ray-absorption fine structure of liquid water,” Phys. Rev. B 36, 1361-1364 (1987).CrossRefGoogle ScholarPubMed
[Yang 1987b] Yang, B.-X., et al., “Characterization of phosphors in the soft x-ray region,” Nucl. Inst. Meth. Phys. Res. A 258, 141-145 (1987).CrossRefGoogle Scholar
[Yang 1993] Yang, B. X., “Fresnel and refractive lenses for x-rays,” Nucl. Inst. Meth. Phys. Res. A 328, 578-587 (1993).CrossRefGoogle Scholar
[Yang 1995] Yang, B., et al., “GeoCARS microfo-cusing Kirkpatrick-Baez mirror bender development,” Rev. Sci. Inst. 66, 2278-2280 (1995).CrossRefGoogle Scholar
[Yang 2014] Yang, Q., et al., “X-ray fluorescence computed tomography with absorption correction for biomedical samples,” X-ray Spect. 43, 278-285 (2014).CrossRefGoogle Scholar
[Yang 2017] Yang, X., et al., “A convolutional neural network approach to calibrating the rotation axis for x-ray computed tomography,” J. Synch. Rad. 24, 469-475 (2017).CrossRefGoogle ScholarPubMed
[Yang 2018] Yang, X., et al., “Low-dose x-ray tomography through a deep convolutional neural network,” Sci. Rep. 8, 2575 (2018).CrossRefGoogle ScholarPubMed
[Ye 2018] Ye, L., et al., “Quantitative relations between interaction parameter, miscibility and function in organic solar cells,” Nature Mater. 17, 253-261 (2018).CrossRefGoogle ScholarPubMed
[Yonath 1980] Yonath, A. E., et al., “Crystallization of the large ribosomal subunits from Bacillus stearother-mophilus,” Biochem. Int. 1, 428-435 (1980).Google Scholar
[Yoon 2011] Yoon, C. H., et al., “Unsupervised classification of single-particle x-ray diffraction snapshots by spectral clustering,” Opt. Express 19, 16542-16549 (2011).CrossRefGoogle ScholarPubMed
[Young 1972] Young, M., “Zone plates and their aberrations,” J. Opt. Soc. Am. 62, 972-976 (1972).CrossRefGoogle Scholar
[Yu 1998] Yu, L., et al., “Quasi-discrete Hankel transform,” Opt. Lett. 23, 409-411 (1998).CrossRefGoogle ScholarPubMed
[Yu 2018] Yu, Y.-S., et al., “Three-dimensional localization of nanoscale battery reactions using soft x-ray tomography,” Nature Comm. 9, 921 (2018).CrossRefGoogle ScholarPubMed
[Yuan 2013] Yuan, Y., et al., “Epidermal growth factor receptor targeted nuclear delivery and high-resolution whole cell x-ray imaging of Fe3O4@TiO2 nanoparticles in cancer cells,” ACS Nano 7, 10502-10517 (2013).CrossRefGoogle ScholarPubMed
[Yulin 2006] Yulin, S., et al., “Interface-engineered EUV multilayer mirrors,” Microelectron. Eng. 83, 692-694 (2006).CrossRefGoogle Scholar
[Yumoto 2005] Yumoto, H., et al., “Fabrication of elliptically figured mirror for focusing hard x rays to size less than 50 nm,” Rev. Sci. Inst. 76, 063708 (2005).CrossRefGoogle Scholar
[Yun 1987a] Yun, W. B. and Howells, M. R., “High-resolution Fresnel zone plates for x-ray applications by spatial-frequency multiplication,” J. Opt. Soc. Am. 4, 34-40 (1987).CrossRefGoogle Scholar
[Yun 1987b] Yun, W.-B., et al., “Observation of the soft X-ray diffraction pattern of a single diatom,” Acta Cryst. A 43, 131-133 (1987).CrossRefGoogle Scholar
[Yun 1988] Yun, W.-B. and Howells, M. R., “Experimental demonstration of producing high resolution zone plates by spatial-frequency multiplication,” in [Sayre 1988], 182-185.Google Scholar
[Yun 1992] Yun, W.-B., et al., “Coherent hard x-ray fo-cussing optics and applications,” Rev. Sci. Inst. 63, 582-585 (1992).CrossRefGoogle Scholar
[Yun 2016] Yun, W., et al., “X-ray illuminators with high flux and high flux density,” US Patent Office patent 9,499,781 (filed 2014, granted 2016).Google Scholar
[Zabler 2005] Zabler, S., et al., “Optimization of phase contrast imaging using hard x rays Rev. Sci. Inst. 76 (2005).CrossRefGoogle Scholar
[Zaidi 2003] Zaidi, H. and Hasegawa, B., “Determination of the attenuation map in emission tomography,” J. Nuc. Med. 44, 291-315 (2003).Google ScholarPubMed
[Zaloga 1974] Zaloga, G. and Sarma, R., “New method for extending the diffraction pattern from protein crystals and preventing their radiation damage,” Nature 251, 551-552 (1974).CrossRefGoogle ScholarPubMed
[Zeitler 1970a] Zeitler, E. and Thomson, M., “Scanning transmission electron microscopy. II.,” Optik 31, 359-366 (1970).Google Scholar
[Zeitler 1970b] Zeitler, E. and Thomson, M. G. R., “Scanning transmission electron microscopy. I.,” Optik 31, 258-280 (1970).Google Scholar
[Zeng 2008] Zeng, X., et al., “Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes,” App. Opt. 47, 2376-2381 (2008).Google ScholarPubMed
[Zernike 1935] Zernike, F., “Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung,” Physikalische Zeitschrift 36, 848-851 (1935).Google Scholar
[Zernike 1938] Zernike, F., “The concept of degree of coherence and its application to optical problems,” Physica 5, 785-795 (1938).CrossRefGoogle Scholar
[Zernike 1942a] Zernike, F., “Phase contrast, a new method for microscopic observation of transparent objects. Part I,” Physica 9, 686-698 (1942).Google Scholar
[Zernike 1942b] Zernike, F., “Phase-contrast, a new method for microscopic observation of transparent objects. Part II,” Physica 9, 974-986 (1942).Google Scholar
[Zhang 1994] Zhang, X., et al., “Micro-XANES: chemical contrast in the scanning transmission x-ray microscope,” Nucl. Inst. Meth. Phys. Res. A 347, 431-435 (1994).CrossRefGoogle Scholar
[Zhang 1995a] Zhang, H., et al., “Optical luminescence spectroscopy with the scanning soft x-ray microscope at HASYLAB/DESY,” Rev. Sci. Inst. 66, 3513-3519 (1995).CrossRefGoogle Scholar
[Zhang 1995b] Zhang, X., et al., “Exposure strategies for PMMA from in situ XANES spectroscopy,” J. Vac. Sci. Tech. B 13, 1477-1483 (1995).Google Scholar
[Zhang 1996] Zhang, X., et al., “Mapping and measuring DNA to protein ratios in mammalian sperm head by XANES imaging,” J. Struct. Bio. 116, 335-344 (1996).CrossRefGoogle ScholarPubMed
[Zhang 2010] Zhang, F. and Rodenburg, J. M., “Phase retrieval based on wave-front relay and modulation,” Phys. Rev. B 82, 121104 (2010).CrossRefGoogle Scholar
[Zhang 2013] Zhang, F., et al., “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express 21, 13592-13606 (2013).Google ScholarPubMed
[Zhang 2016] Zhang, F., et al., “Phase retrieval by coherent modulation imaging,” Nature Comm. 7, 13367 (2016).CrossRefGoogle ScholarPubMed
[Zhao 2017] Zhao, W. and Sakurai, K., “CCD camera as feasible large-area-size x-ray detector for x-ray fluorescence spectroscopy and imaging,” Rev. Sci. Inst. 88, 063703 (2017).CrossRefGoogle Scholar
[Zhong 2016] Zhong, J.-Q., et al., “Oxidation and reduction under cover: chemistry at the confined space between ultrathin nanoporous silicates and Ru(0001),” J. Phys. Chem. C 120, 8240-8245 (2016).CrossRefGoogle Scholar
[Zhu 1999] Zhu, S., et al., “Confinement-induced miscibility in polymer blends,” Nature 400, 49-51 (1999).CrossRefGoogle Scholar
[Zhu 2014] Zhu, Y., et al., “Synchrotron-based x-ray microscopic studies for bioeffects of nanomaterials,” Nanomed. Nanotech. Bio. Med. 10, 515-524 (2014).CrossRefGoogle ScholarPubMed
[Zhu 2016a] Zhu, X., et al., “Measuring spectroscopy and magnetism of extracted and intracellular magnetosomes using soft x-ray ptychography,” Proc. Nat. Acad. Sci. 113, E8219-E8227 (2016).CrossRefGoogle ScholarPubMed
[Zhu 2016b] Zhu, Y., et al., “Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy,” Sci. Rep. 6, 1-7 (2016).Google ScholarPubMed
[Ziedses des Plantes 1932] Ziedses des Plantes, B. G., “Eine Neue Methode zur Differenzierung in der Röntgenogra-phie (Planigraphie),” Acta Radiologica 13, 182-192 (1932).Google Scholar
[Zierold 1982a] Zierold, K., “Cryopreparation of mammalian tissue for X-ray microanalysis in STEM,” J. Mi-crosc. 125, 149-156 (1982).Google ScholarPubMed
[Zierold 1982b] Zierold, K., “Preparation of biological cryosections for analytical electron microscopy,” Ultra-microscopy 10, 45-53 (1982).Google ScholarPubMed
[Zierold 1993] Zierold, K., “The cryopuncher: a pneumatic cryofixation device for x-ray microanalysis of tissue specimens,” J. Microsc. 171, 267-272 (1993).CrossRefGoogle Scholar
[Zschech 2008] Zschech, E., et al., “High-resolution x-ray imaging - a powerful nondestructive technique for applications in semiconductor industry,” Appl. Phys. A 92, 423-429 (2008).CrossRefGoogle Scholar
[Zschech 2009] Zschech, E., et al., “Stress-induced phenomena in nanosized copper interconnect structures studied by x-ray and electron microscopy,” J. Appl. Phys. 106, 093711 (2009).CrossRefGoogle Scholar
[Zschech 2011] Zschech, E., et al., “Devices, materials, and processes for nanoelectronics: characterization with advanced x-ray techniques using lab-based and synchrotron radiation sources,” Adv. Eng. Mater. 13, 811-836 (2011).CrossRefGoogle Scholar
[Zschornack 2007] Zschornack, G., Handbook of X-ray Data, Springer (2007).Google Scholar
[Zwickl 2008] Zwickl, B. M., et al., “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett. 92, 103125 (2008).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Chris Jacobsen, Argonne National Laboratory, Illinois
  • Book: X-ray Microscopy
  • Online publication: 28 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781139924542.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Chris Jacobsen, Argonne National Laboratory, Illinois
  • Book: X-ray Microscopy
  • Online publication: 28 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781139924542.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Chris Jacobsen, Argonne National Laboratory, Illinois
  • Book: X-ray Microscopy
  • Online publication: 28 October 2019
  • Chapter DOI: https://doi.org/10.1017/9781139924542.015
Available formats
×