Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T12:54:37.318Z Has data issue: false hasContentIssue false

3 - The Amazon River basin

Published online by Cambridge University Press:  10 August 2009

W. J. Junk
Affiliation:
Max-Planck-Institute for Limnology
M. T. F. Piedade
Affiliation:
Instituto Nacional de Pesquisas da Amazonia (INPA)
Lauchlan H. Fraser
Affiliation:
University of Akron, Ohio
Paul A. Keddy
Affiliation:
Southeastern Louisiana University
Get access

Summary

Introduction

Since the arrival of human beings about 12 000 years ago, wetlands have been favorite colonization areas because of their rich food resources. On Marajó Island at the mouth of the Amazon River and in its lower course, Amerindians built large chiefdoms on elevated places that provided protection against flooding (Roosevelt 1999). They sustainably managed the populations of manatees, river turtles, and other game animals and fish, as evidenced by the first Europeans arriving in Amazonia being deeply impressed by the large numbers of these animals. Acuña (1641) gave detailed information about the use of the aquatic resources of the Amazon River and emphasized the fertility of the floodplain. The vegetation cover was only marginally affected by the Amerindians because they did not raise domestic animals, which would have required deforestation for the preparation of pastures. They grew bananas, manioc, corn, vegetables, fruit trees, and medicinal plants in species-rich home gardens on the levees. In pre-Columbian times, the population density in the Amazon River floodplain was approximately 28 humans per km2 in comparison with 1.2 humans per km2 in the nutrient-poor uplands (mean, 14.6) (Denevan 1976).

After the arrival of the Europeans in 1500, the indigenous population decreased rapidly because of introduced diseases, wars, and slave raidings. Indigenous resource management for subsistence changed to export-oriented exploitation by Europeans, and in a few centuries the previously large populations of turtles and manatees – and later, caimans and otters – were depleted to very low levels.

Type
Chapter
Information
The World's Largest Wetlands
Ecology and Conservation
, pp. 63 - 117
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, A. N. (1988). O Pantanal Mato-Grossense e a teoria dos refugios. Revista Brasileira de Geofísica, 50, 9–57Google Scholar
Acuña, C. de (1641). New discovery of the great river of the Amazons. In Expeditions into the Valley of the Amazons, 1539, 1540, 1639, ed. Markham, C. R.. London: The Hakluyt Society, pp. 47–142Google Scholar
Adis, J. and Junk, W. J. (2002). Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology, 47, 711–31CrossRefGoogle Scholar
Akagi, H., Malm, O., Branches, F.et al. (1995). Human exposure to mercury due to gold mining in the Tapajós River Basin, Brazil: speciation of mercury in human hair, blood and urine. Water, Air and Soil Pollution, 80, 85–94CrossRefGoogle Scholar
Ayres, J. M. C., Alves, A. R., Queiroz, H. L. de et al. (1999). Mamirauá: the conservation of biodiversity in an Amazonian flooded forest. In Várzea: Diversity, Development, and Conservation of Amazonia's Whitewater Floodplains, eds. Padoch, C., Ayres, J. M., Pinedo-Vasquez, M., and Henderson, A.. Advances in Economic Botany 13. New York: The New York Botanical Garden Press, pp. 203–16Google Scholar
Bayley, P. B. (1983). Central Amazon fish populations: biomass, and some dynamic characteristics. Ph. D. thesis, Dalhousie University, Halifax, Canada
Bayley, P. B. and Petrere, M. Jr. (1989). Amazon fisheries: assessment methods, current status, and management options. Canadian Journal of Fisheries and Aquatic Sciences (Special Publication), 106, 385–98Google Scholar
Becker, B. K. (1995). Undoing myths: the Amazon – an urbanized forest. In Brazilian Perspectives on Sustainable Development of the Amazon Region, vol. 15, eds. M. Clüsener-Godt and I. Sachs. Paris: UNESCO. Carnforth, UK: Parthenon Publishing, pp. 53–89
Becker, B. K. (1999). Cenários de curto prazo para o desenvolvimento da Amazônia. Brasília, Brazil: Ministério de Meio Ambiente/SCAGoogle Scholar
Böhlke, J. E., Weitzman, S. H., and Menezes, N. A. (1978). Estado atual da sistemática dos peixes de água doce da América do Sul. Acta Amazônica, 8(4), 657–77Google Scholar
Bozelli, R. L., Esteves, F.., and Roland, F. (2000). Lago Batata: impacto e recuperação de um ecossistema Amazônico. Rio de Janeiro, Brazil: Universidade Federal de Rio de JaneiroGoogle Scholar
Brady, A. and Riding, T. (1996). The Importance of Wetlands in Water Resource Management: a Literature Review. NSW, Australia: Department of Land and Water ConservationGoogle Scholar
Brito, M. (2001). Eixos amazônicos de integração e desenvolvimento: obras e empreendimentos. In Biodiversidade na Amazônia Brasileira, eds. Veríssimo, A., Moreira, A., Sawyer, D., Santos, I., and Pinto, L. P., Brasília, Brazil: Estação Liberdade & Instituto Socioambiental, pp. 321–6Google Scholar
CABS/CI (Center for Applied Biodiversity Science/Conservation International) (2000). Database on Amazonian Protected Areas. Washington, DC: CABS and CI
Clements, F. E. (1905). Research Methods in Ecology. Lincoln, NE: University Publishing CoGoogle Scholar
Colinvaux, P. A., Irion, G., Räsänen, M. E., Bush, M. B. and Nunes de Mello, J. A. (2001). A paradigm to be discarded: geological and paleoecological data falsify the HAFFER & PRANCE refuge hypothesis of Amazonian speciation. Amazoniana, 16(3/4), 609–46Google Scholar
Comision Amazonica de Desarollo y Medio Ambiente (1992). Amazonia sin mitos. New York: Banco Interamericano de Desarrollo, Programa de las Naciónes Unidas para el Desarrollo, Tratado deo Cooperacion Amazonica
Denevan, W. M. (1976). The aboriginal population of Amazonia. In The Native Population of the Americas, ed. Denevan, W. M.. Madison, WI: University of Wisconsin Press, pp. 205–34Google Scholar
Diegues, A. C. S. (1994). An Inventory of Brazilian Wetlands. Gland, Switzerland: IUCNGoogle Scholar
Dillinger, W. Z. and Webb, S. B. (1999). Fiscal Management in Federal Democracies: Argentina and Brazil. Policy Research Working Paper 2121. Washington, DC: World BankGoogle Scholar
Duellman, E. D. (1988). Patterns of species diversity in anuran amphibians in the American tropics. Annales of the Missouri Botanical Garden, 75, 79–104CrossRefGoogle Scholar
Fadini, P. S. (1999). Comportamento biogeoquímico do mercúrio na bacia do Rio Negro. Ph. D. thesis, Universidade Estadual de Campinas, Campinas, Brazil
Fearnside, P. M. (1988). Prospects for sustainable agricultural development in tropical forests. ISI Atlas of Science, Animal and Plant Sciences, 1(3–4), 251–6Google Scholar
Fearnside, P. M. (1989). Brazil's Balbina Dam: environment versus the legacy of the pharaohs in Amazônia. Environmental Management, 13(4), 401–23CrossRefGoogle Scholar
Finlayson, C. M. and Spiers, A. G. (1999). Global Review of Wetland Resources and Priorities for Wetland Inventory, 2nd edn. Wageningen, the Netherlands: Wetlands InternationalGoogle Scholar
Fisher, C. F. A., Chagas, A. L. das G. A., and Dornelles, L. D. C. (1992). Pesca de águas interiores. Série de Estudos de Pesca 2. Brazil: IBAMA, Coleção Meio AmbienteGoogle Scholar
Fittkau, E.-J. (1973). Artenmannigfaltigkeit amazonischer Lebensräume aus ökologischer Sicht. Amazoniana, 4(3), 321–40Google Scholar
Fittkau, E.-J. (1982). Struktur, Funktion und Diversität zentralamazonischer Ökosysteme. Archiv für Hydrobiologie, 95, 29–45Google Scholar
Fittkau, E. J., Irmler, U., Junk, W. J., Reiss, F., and Schmidt, G. W. (1975). Productivity, biomass and population dynamics in Amazonian water bodies. In Tropical Ecological Systems. Trends in Terrestrial and Aquatic Research, eds. Golley, F. B. and Medina, E.. New York: Springer Verlag, pp. 289–311CrossRefGoogle Scholar
Furch, K. (1997). Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 47–68CrossRefGoogle Scholar
Furch, K. and Junk, W. J. (1997). The chemical composition, food value and decomposition of herbaceous plants and leaf litter of the floodplain forest. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 187–205CrossRefGoogle Scholar
Forsberg, B. R., Forsberg, M. C. S., Padovani, C. R., Sargentini, E., and Malm, O. (1995). High levels of mercury in fish and human hair from the Rio Negro basin (Brazilian Amazon): Natural background or anthropogenic contamination? In Proceedings of the International Workshop on Environmental Mercury Pollution and its Health Effects in the Amazon River Basin, November, 1994, Rio de Janeiro, Brazil, eds. Kato, H. and Pfeiffer, W. C.. Minamata, Japan: National Institute for Minamata Disease, pp. 33–40Google Scholar
Gentry, A. H., Nelson, B. W., Herrera-MacBryde, O., Huber, O., and Villamil, B. (1997). Regional overview: South America. In Centres of Plant Diversity. A Guide and Strategy for their Conservation, vol. 3, The Americas, eds. S. Davis, V. H. Heywood, O. Berrera-MacBryde, J. Villa-Lobos, and A. C. Hamilton. Cambridge, UK: WWF and IUCN, pp. 269–307
Gopal, B. and Junk, W. J. (2000). Biodiversity in wetlands: an introduction. In Biodiversity in Wetlands: Assessment, Function and Conservation, vol. 1, eds. Gopal, B., Junk, W. J., and Davis, J. A.. Leiden, the Netherlands: Backhuys Publishers, pp. 1–10Google Scholar
Goulding, M., Carvalho, M. L., and Ferreira, E. G. (1988). Rio Negro: Rich Life in Poor Water. The Hague, the Netherlands: SPB Academic PublishingGoogle Scholar
Goulding, M., Smith, N. J. H., and Mahar, D. J. (1996). Floods of Fortune: Ecology and Economy Along the Amazon. New York: Columbia University PressGoogle Scholar
Groombridge, B. (1992). Global Biodiversity. Status of the Earth's Living Resources. London: Chapman and HallGoogle Scholar
Gutjahr, E. (1996). Untersuchung zur Optimierung der Ackernutzung in den Überschwemmungsgebieten (Várzeas) des mittleren Amazonas. Ph. D. thesis, Verlag Dr. Kovac, Hamburg, Germany
Gutjahr, E. (2000). Prospects for arable farming in the floodplains of the Central Amazon. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M. Leiden, the Netherlands: Backhuys Publishers, pp. 141–70Google Scholar
Haffer, J. (1982). General aspects of the refuge theory. In Biological Diversification in the Tropics, ed. Prance, G. T.. New York: Columbia University Press, pp. 6–24Google Scholar
Haffer, J. and Prance, G. T. (2001). Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana, 16(3/4), 579–608Google Scholar
Hails, A. J. (1996). Wetlands, Biodiversity and the Ramsar Convention. The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. Gland, Switzerland: Ramsar Convention Bureau. New Delhi, India: Ministry of Environment and ForestsGoogle Scholar
Hanagarth, W. (1993) Acerca de la geolecologia de las sabanas del Beni en el Noreste de Bolivia. La Paz, Bolivia: Instituto de EcologiaGoogle Scholar
Hanagarth, W. and Szwagrzak, A. (1998). Geoecology and biodiversity: problems and perspectives for the management of the natural resources of Bolivia's forest and savanna ecosystems. In Biodiversity: a Challenge for Development Research and Policy, eds. Barthlott, E. and Winiger, M.. New York: Springer Verlag, pp. 289–312Google Scholar
Hansen, A. J. and di Castri, F. (1992). Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Ecological Studies 92. Berlin, Germany: Springer VerlagCrossRefGoogle Scholar
Herrera-MacBryde, O., Dallmeier, F., MacBryde, B., Comiskey, J. A., and Miranda, C. (2000). Biodiversity, Conservation, and Management in the Region of the Beni Biological Station Biosphere Reserve, Bolivia. SI/MAB Series 4. Washington, DC: Smithsonian InstitutionGoogle Scholar
Hödl, W. W. (1977). Call differences and calling site segregation in anuran species from Central Amazonian floating meadows. Oecologia, 28, 351–63CrossRefGoogle ScholarPubMed
Hödl, W. W. (1990). Reproductive diversity in Amazonian lowland frogs. Fortschritte der Zoologie, 38, 41–60Google Scholar
Höfer, H. (1997) The spider communities. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 372–84CrossRefGoogle Scholar
IBAMA (Brazilian Environmental Agency) (1994). Relatório preliminar sobre ordenamento pesqueiro para a bacia Amazônica. Brasília, Brazil: Relatório Técnico, IBAMA
IBAMA (Brazilian Environmental Agency) (1997). Administração participativa: um desafio à gestão ambiental. Brasília, Brazil: Relatório Técnico, IBAMA
IBGE (The Brazilian Institute for Geography and Statistics) (2002). Censo Demografico 2000. http://www.ibge.gov.br
INPE (2000). Monitoramento da floresta Amazônica Brazileira por satélite 1999–2000. http://www.inpe.br/Informacoes_Eventos/amz1999_2000/Prodes/index.htm
Irion, G., Junk, W. J., and de Mello, J. A. S. N. (1997). The large central Amazonian river floodplains near Manaus: geological, climatological, hydrological, and geomorphological aspects. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 23–46CrossRefGoogle Scholar
IRRI (International Rice Research Institute) (1985). Wetland soils, characterization, classification, and utilization. In Proceedings of an IRRI Workshop, March 26–April 5, 1984, Los Baṋos, the Philipines (under sponsorship of IRRI). Los Baṋos, the Philipines: International Rice Research Institute
Isaac, V. J., Ruffino, M. L., and McGrath, D. (1998). In search of a new approach to fisheries management in the middle Amazon. In Fishery Stock Assessment Model, eds. Quinn, T. J. II, Funk, F., Heifetz, J.et al. Alaska Sea Grant College Program, AS-SG-98-01. Fairbanks, Alaska: University of Alaska, pp. 889–902Google Scholar
Johnson, D. L. (1983). The Californian continental borderland: landbridges, watergaps and biotope dispersal. In Quaternary Coastlines and Marine Archaeology, eds. Masters, P. M. and Flemming, N. C.. London: Academic Press, pp. 481–527Google Scholar
Junk, W. J. (1980). Áreas inundáveis: um desafio para limnologia. Acta Amazonica, 10(4), 775–95CrossRefGoogle Scholar
Junk, W. J. (1985). The Amazon floodplain: a sink or source of organic carbon?Mitteilungen des Geologischen Palaeantologischen Institutes der Universität Hamburg, 58, 267–83Google Scholar
Junk, W. J. (1989). Flood tolerance and tree distribution in central Amazonian floodplains. In Tropical Forests: Botanical Dynamics, Speciation and Diversity, eds. Holm-Nielsen, L. B., Nielsen, I. C., and Balslev, H.. New York: Academic Press, pp. 47–64Google Scholar
Junk, W. J. (1992). Wetlands of tropical South America. In Wetlands of the World, vol. 1, eds. Whigham, D. F., Dykyjova, D. and Hejny, S.. Dordrecht, the Netherlands: Junk, pp. 679–739Google Scholar
Junk, W. J. (1994). Ecology of the várzea, Floodplain of Amazonian white water rivers. In The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin, ed. Sioli, H.. Dordrecht, the Netherlands: Junk, pp. 216–43Google Scholar
Junk, W. J. (1997). The Central Amazon Floodplain. Ecology of a Pulsing System. Ecological Studies 126. Berlin, Germany: Springer VerlagCrossRefGoogle Scholar
Junk, W. J. (2000). Mechanisms for development and maintenance of biodiversity in Neotropical floodplains. In Biodiversity in Wetlands, eds. Gopal, B., Junk, W. J., and Davis, . Leiden, the Netherlands: Backhuys Publishers, pp. 119–39Google Scholar
Junk, W. J. and Mello, J. A. S. N. (1987). Impactos ecológicos das represas hidrelétricas na bacia Amazônica Brasileira. Tübinger Geographische Studien, 95, 367–85Google Scholar
Junk, W. J. and Piedade, M. T. F. (1993). Herbaceous plants of the Amazon floodplain near Manaus: species diversity and adaptations to the flood pulse. Amazoniana, 12(3/4), 467–84Google Scholar
Junk, W. J., Robertson, B. A., Darwich, A. J., and Vieira, L. (1981). Investigações limnológicas e ictiológicas em Curuá-Una, a primeira represa hidrelétrica na Amazônia Central. Acta Amazonica, 11(4), 689–716CrossRefGoogle Scholar
Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Journal of Fisheries and Aquatic Sciences (Special Publication), 106, 110–27Google Scholar
Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M. (eds.) (2000a). The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management. Leiden, The Netherlands: Backhuys PublishersGoogle Scholar
Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M. (eds.) (2000b). Actual use and options for the sustainable management of the central Amazon floodplain: discussion and conclusions. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 535–79Google Scholar
Katzer, F. (1903). Grundzüge der Geologie des unteren Amazonas Gebietes. Leipzig, Germany: Verlag Max WegGoogle Scholar
Kern, J. and A. Darwich, A. (1997). Nitrogen turnover in the várzea. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 119–36CrossRefGoogle Scholar
Kern, J., Kreibich, H., and Darwich, A. (2002). Nitrogen dynamics on the Amazon floodplain in relation to the flood pulse of the Solimões River. In The Ecohydrology of South American Rivers and Wetlands, ed. McClain, M. E.. Wallingford, UK: IAHS Press, pp. 35–47Google Scholar
Klammer, G. (1982). Die Paläowüste des Pantanal von Mato Grosso und die pleistozäne Klimageschichte der Brasilianischen Randtropen. Zeitschrift für Geomorphologie, 26(4), 393–416Google Scholar
Klinge, H. (1967). Podzol soils: a source of blackwater rivers in Amazonia. Atas do Simpósio Sobre a Biota Amazônica, 3, 117–25Google Scholar
Klinge, H., Junk, W. J., and Revilla, J. C. (1990). Status and distribution of forested wetlands in tropical South America. Forest Ecology and Management, 33/34, 81–101CrossRefGoogle Scholar
Kohlhepp, G. (2001). Amazonia 2000. Amazoniana, 16(3/4), 363–95Google Scholar
Koste, W. and Robertson, B. (1983). Taxonomic studies of the Rotifera (phylum Aschelminthes) from a Central Amazonian várzea lake, Lago Camaleão (Ilha de Marchantaria, Rio Solimões, Amazonas, Brazil). Amazoniana, 8(2), 225–54Google Scholar
Koste, W., Hardy, E., and Robertson, B. (1984). Further taxonomical studies of the Rotifera (phylum Aschelminthes) from a Central Amazonian várzea lake, Lago Camaleão (Ilha de Marchantaria, Rio Solimões, Amazonas, Brazil). Amazoniana, 8(4), 555–76Google Scholar
Kreibich, H. and Kern, J. (2003). Nitrogen fixation and denitrification in a floodplain forest near Manaus. Hydrological Processes, 17, 1431–41CrossRefGoogle Scholar
Kubitzki, K. (1989). The ecogeographical differentiation of Amazonian inundation forests. Plant Systematics and Evolution, 163, 285–304CrossRefGoogle Scholar
Lacerda, L. D. (2002). Mangrove Ecosystems: Function and Management. Berlin, Germany: Springer VerlagCrossRefGoogle Scholar
Lacerda, L. D. and Pfeiffer, W. (1992). Mercury from gold mining in the Amazon environment: an overview. Química Nova, 15(2), 155–60Google Scholar
Laurance, W. F., Cochrane, M. A., Bergen, S.et al. (2001). The future of the Brazilian Amazon. Science, 291, 438–9CrossRefGoogle ScholarPubMed
Lowe-McConnell, R. H. (1964). The fishes of the Rupununi savanna district of British Guiana, South America. Part 1. Ecological groupings of fish species and effects of the seasonal cycle on the fish. Journal of the Linnean Society of London (Zoology), 45(304), 103–44CrossRefGoogle Scholar
Lundberg, J. G. (1998). The temporal context for the diversification of Neotropical fishes. In Phylogeny and Classification of Neotropical Fishes, eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S.. Porto Alegre, Brazil: EDIPUCRS, pp. 49–68Google Scholar
Lundberg, J. G., Marshall, L. G., Guerrero, J. et al. (1998). The stage for neotropical fish diversification. In Phylogeny and Classification of Neotropical Fishes, eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S.. Porto Alegre, Brazil: EDIPUCRS, pp. 13–48Google Scholar
Mago-Leccia, F. (1970). Lista de los pesces de Venezuela, incluyendo un estúdio preliminar sobre la ictiogeografia del pais. Caracas: Ministerio de Agricultura y Cria, Oficina Nacional de PescaGoogle Scholar
Mamirauá Management Plan (1996). Mamirauá Management Plan. Brasília, Brazil: Sociedade Civil Mamirauá (SCM), National Council for Scientific and Technological Development (CNPq), Environmental Protection Institute of the State of Amazonas (IPAAM)
McGrath, D., Castro, F., and Futema, C. (1994). Reservas de lago e o manejo comunitário da pesca no Baixo Amazonas: uma avaliação preliminar. In A Amazônia e a crise de modernização, eds. D'Inaco, M. A. and Silveira, I. M.. Belém, Brazil: MPEG, pp. 389–402Google Scholar
McGrath, D., Castro, F. de, Câmara, E., and Futemma, C. (1999). Community management of floodplain lakes and the sustainable development of Amazonian fisheries. In Várzea: Diversity, Development, and Conservation of Amazonias's Whitewater Floodplains, eds. Padoch, C., Ayres, J. M., Pinedo-Vasquez, M., and Henderson, A.. Advances in Economic Botany 13. New York: The New York Botanical Garden Press, pp. 59–82Google Scholar
Meade, R. H. (1994). Suspended sediments of the modern Amazon and Orinico rivers. Quaternary International, 21, 29–39CrossRefGoogle Scholar
Meade, R. H., Dunne, T., Richey, J. E., Santos, U. de M., and Salati, E. (1985). Storage and remobilization of suspended sediment in the lower Amazon river of Brazil. Science, 228, 488–90CrossRefGoogle ScholarPubMed
Mérona, B. de, Santos, G. M., and Almeida, R. G. (2001). Short term effects of Tucurui Dam (Amazonia, Brazil) on the trophic organization of fish communities. Environmental Biology of Fishes
Mertes, L. A. K. (1994). Rates of floodplain sedimentation on the Central Amazon river. Geology, 22, 171–42.3.CO;2>CrossRefGoogle Scholar
Mertes, L. A. K. and Meade, R. H. (1985). Particle Size of Sands Collected from the Bed of the Amazon River and its Tributaries in Brazil During 1982–84. US Geological Survey Open File Report, pp. 85–333
Milliman, J. D. (1990). River discharge of water and sediment to the oceans: variation in space and time. In Facets of Modern Biogeochemistry, eds. Ittekkot, V., Kempe, S., Michaelis, W., and Spitzy, A.. Berlin, Germany: Springer Verlag, pp. 83–90CrossRefGoogle Scholar
Ministerio del Medio Ambiente (2001). Política Nacional para humedales interiores de Colombia. Bogotá, Colombia: Ministerio del Medio Ambiente
Mitsch, W. J. and Gosselink, J. G. (2000). Wetlands, 3rd edn. New York: John WileyGoogle Scholar
Müller, J., Irion, G., Mello, J. N., and Junk, W. J. (1995). Hydrological changes of the Amazon during the last glacial–interglacial cycle in Central Amazonia (Brazil). Naturwissenschaften, 82, 232–5CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–8CrossRefGoogle ScholarPubMed
Navid, D. (1989). The international law of migratory species: The Ramsar Convention. Natural Resources Journal, 29, 1001–16Google Scholar
Nepstad, D. C., Veríssimo, A., Alencar, A.et al. (1999). Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505–8CrossRefGoogle Scholar
Nepstad, D. C., Capobianco, J. P., Barros, A. C.et al. (2000). Avança Brazil: Os custos ambientais para a Amazônia. [Avança Brazil: the Environmental Costs for Amazonia]. Belém, Brazil. Gráfica e Editora AlvesGoogle Scholar
Noda, S. N., Noda, H., and Santos, H. P. dos (2000). Family farming systems in the floodplains of the state of Amazonas. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 215–42Google Scholar
Nogueira, F. and Junk, W. J. (2000). Mercury from goldmining in Amazon wetlands: contamination sites, intoxication levels and dispersion pathways. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 477–503Google Scholar
Nunes da Cunha, C. and Junk, W. J. (2004). Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Applied Vegetation Science, 7, 103–10Google Scholar
Odum, E. P. (1981). Foreword. In Wetlands of Bottomland Hardwood Forests, eds. Clark, J. R. and Benforado, J.. Amsterdam, the Netherlands: Elsevier, pp. 8–10Google Scholar
Ohly, J. J. (2000). Development of Central Amazonia in the modern era. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 27–73Google Scholar
Ohly, J. J. and Hund, M. (2000). Floodplain animal husbandry in central Amazonia. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 313–43Google Scholar
Padoch, C., Ayres, J. M., Pinedo-Vasquez, M., and Henderson, A. (eds.) (1999). Várzea: Diversity, Development, and Conservation of Amazonia's Whitewater Floodplains. Advances in Economic Botany 13. New York: The New York Botanical Garden PressGoogle Scholar
Parolin, P. and Ferreira, L. V. (1998). Are there differences in specific wood gravities between trees in várzea and igapó (Central Amazonia)?Ecotropica, 4, 25–32Google Scholar
Patrick, R. (1966). The Catherwood Foundation Peruvian–Amazon Expedition I. Limnological observations and discussion of results. Monographs of the Academy of Natural Sciences of Philadelphia, 14, 5–28Google Scholar
Petermann, P. (1997). The birds. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 419–54CrossRefGoogle Scholar
Ponce, V. M. (1995). Impacto hidrológico e ambiental da hidrovia Paraná-Paraguai no Pantanal Matogrossense: um estudo de referência. San Diego, CA: San Diego State UniversityGoogle Scholar
Pott, V. J. and Pott, A. (2000). Plantas aquáticas do Pantanal. Brasília, Brazil: Empresa Brasileira des Pesquisa Agropecuária (EMBRAPA)Google Scholar
Prance, G. T. (1982). Biological Diversification in the Tropics. New York: Columbia University PressGoogle Scholar
Prentice, I. C. and Lloyd, J. (1998). C-quest in the Amazon Basin. Nature, 396, 619–20CrossRefGoogle Scholar
Puhakka, M., Kalliola, R., Rajasilta, M., and Salo, J. (1992). River types, site evolution and successional vegetation patterns in Peruvian Amazonia. Journal of Biogeography, 19, 651–65CrossRefGoogle Scholar
Reid, J. (1989). The distribution of the genus Thermocyclops (Copepoda, Cyclopoida) in the western hemisphere, with description of T. parvus, new species. Hydrobiologia, 175, 149–74CrossRefGoogle Scholar
Richey, J. E., Brock, J. T., Naiman, R. J., Wissmar, R. C., and Stallard, R. F. (1980). Organic carbon: oxidation and transport in the Amazon River. Science, 207, 1348–51CrossRefGoogle Scholar
Richey, J. E., Meade, R. H., Salati, E.et al. (1986). Water discharge and suspended sediment concentrations in the Amazon river. Water Resources Research, 22, 756–64CrossRefGoogle Scholar
Richey, J. E., Krusche, A., Deegan, L.et al. (2001). Land use changes and the biogeochemistry of river corridors in the Amazon. Global Change Newsletter, 45, 19–23Google Scholar
Roosevelt, A. C. (1999). Twelve thousand years of human–environment interaction in the Amazon Floodplain. In Várzea: Diversity, Development, and Conservation of Amazonia's Whitewater Floodplains, eds. Padoch, C., Ayres, J. M., Pinedo-Vasquez, M., and Henderson, A.. Advances in Economic Botany 13. New York: The New York Botanical Garden Press, pp. 371–92Google Scholar
Roulet, M., Lucotte, M., Canuel, R.et al. (1998a). Distribution and partition of total mercury in waters of the Tapajós River Basin, Brazilian Amazon. Science of the Total Environment, 223, 203–11CrossRefGoogle Scholar
Roulet, M., Lucotte, M., Saint-Aubin, A.et al. (1998b). The geochemistry of mercury in central Amazonian soils developed on the Alter-do Chão formation of the lower Tapajós River Valley, Pará State, Brazil. Science of the Total Environment, 223, 1–24CrossRefGoogle Scholar
Ruffino, M. L. (1996). Towards participatory fishery management on the lower Amazon. EC Fisheries Cooperation Bulletin, 9(1), 15–18Google Scholar
Salati, E., Dall'Olio, A., Matsui, E., and Bat, J. A. (1979). Recycling of water in the Amazon basin. An isotopic study. Water Resources Research, 15(5), 1250–8CrossRefGoogle Scholar
Salo, J. (1990). External processes influencing origin and maintenance of inland water-land ecotones. In The Ecology and Management of Aquatic-Terrestrial Ecotones, eds. Naiman, R. J. and Decamps, H.. MAB Series 4. Paris, France: UNESCO Paris and The Parthenon Publishing Group, pp. 37–64Google Scholar
Salo, J., Kalliola, R., Häkkinen, I.et al. (1986). River dynamics and the diversity of Amazon lowland forest. Nature, 322, 254–8CrossRefGoogle Scholar
Santos, G. M. (1996). Impactos da hidreléctrica Samuel sobre as comunidades de peixes do Rio Jamari (Rondônia, Brazil). Acta Amazônica, 25(3/4), 145–63Google Scholar
Santos, G. M. and Oliveira, A. B. Jr. (1999). A pesca no reservatório da hidrelétrica de Balbina (Amazonas, Brazil). Acta Amazônica, 29(1), 145–63CrossRefGoogle Scholar
Sarmiento, J. (1998). Ichthyology of Parque Nacional Noel Kempff Mercado. In A Biological Assessment of Parque Nacional Noel Kempff Mercado, Bolivia, eds. Killeen, T. J. and Schulenberg, T.. RAP Working Papers 10. Washington, DC: Conservation International, pp. 167–73, 356–67Google Scholar
Sarmiento, J. (2000). Observaciones preliminares sobre la composición e distribuición de la ictiofauna de la Estación Biológica del Beni, Bolivia. In Biodiversity, Conservation, and Management in the Region of the Beni Biological Station Biosphere Reserve, Bolivia, eds. Herrera-MacBryde, O., Dallmeier, F., MacBryde, B., Comiskey, J. A., and Miranda, C.. SI/MAB Series 4. Washington, DC: Smithsonian Institution, pp. 129–50Google Scholar
Schäfer, S. A. (1998). Conflict and resolution: impact of new taxa on phylogenetic studies of the Neotropical Cascudinhos (Siluroidei: Loricariidae). In Phylogeny and Classification of Neotropical Fishes, eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S.. Porto Alegre, Brazil: EDIPUCRS, pp. 375–400Google Scholar
Schöngart, J. (2003). Biomass increment, dynamics and modelling of the growth of white water floodplain forests. Ph. D. thesis, University of Göttingen, Germany
Scott, D. A. and Carbonell, M. (1986). Inventario de humedales de la región neotropical. Cambridge, UK: IWRB and IUCNGoogle Scholar
Shackleton, J. N. and Opdyke, N. D. (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial pacific core V28–V238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research, 3, 39–55CrossRefGoogle Scholar
Sioli, H. (1950). Das Wasser im Amazonasgebiet. Forschung und Fortschritt, 26, 274–80Google Scholar
Sioli, H. (1984). The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Monographiae Biologicae. Dordrecht, the Netherlands: JunkCrossRefGoogle Scholar
Soares, M. G. M. and Junk, W. J. (2000). Commercial fishery and fish culture of the state of Amazonas: status and perspectives. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 433–61Google Scholar
Sternberg, H. O'. R. (1998). A água e o homen na várzea do Careiro, 2nd edn. Belém, Brazil: Museu Paraense Emílio GoeldiGoogle Scholar
Stotz, D. F., Fitzpatrick, J. W., Parker, T. E. II. and Moskovits, D. K. (1996). Neotropical Birds. Ecology and Conservation. Chicago, IL: University of Chicago PressGoogle Scholar
SURAPA (Sub Network of Amazonian Protected Areas) (2000). CD-ROM
Tian, H., Melillo, J. M., Kicklighter, D. W.et al. (1998). Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 396, 664–7CrossRefGoogle Scholar
Uherkovich, G. and Schmidt, G. W. (1974). Phytoplanktontaxa in dem zentralamazonischen Schwemmlandsee Lago do Castanho. Amazoniana, 5, 243–83Google Scholar
Hammen, T. and Hooghiemstra, H. (2000). Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews, 19, 725–42CrossRefGoogle Scholar
Vari, R. P. and Malabarba, L. R. (1998). Neotropical ichthyology: an overview. In Phylogeny and Classification of Neotropical Fishes, eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S., and Lucena, C. A. S.. Porto Alegre, Brazil: EDIPUCRS, pp. 1–12Google Scholar
Vieira, R. dos S. (2000). Legislation and the use of Amazonian floodplains. In The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management, eds. Junk, W. J., Ohly, J. J., Piedade, M. T. F., and Soares, M. G. M.. Leiden, the Netherlands: Backhuys Publishers, pp. 505–33Google Scholar
Vogt, R. C., Moreira, G. M., and Duarte, A. C. de O. C. (2001). Biodiversidade de répteis do bioma floresta Amazônica e ações prioritárias para sua conservação. In Biodiversidade na Amazônia Brasileira, eds. Veríssimo, A., Moreira, A., Sawyer, D., Santos, I., and Pinto, L. P.. Brasília, Brazil: Estação Liberdade & Instituto Socioambiental, pp. 89–96Google Scholar
Wantzen, K. M. (1997). Einfluß anthropogen bedingter Versandung auf Habitatstruktur und Lebensgemeinschaften von Cerrado-Bächen in Mato Grosso, Brasilien. Ph. D. thesis, Universität Hamburg, Herbert Utz Verlag, Hamburg, Germany
Wantzen, K. M. (1998a). Effects of siltation on benthic communities in clear water streams in Mato Grosso, Brazil. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie, 26, 1155–9Google Scholar
Wantzen, K. M. (1998b). Abschätzung der Umweltwirkungen von anthropogen bedingter Bodenerosion auf Fließgewässer mittels Biomonitoring, Mato Grosso, Brasilien. Eschborn, Germany: Deutsche Gesellschaft für Technische Zusammenarbiet GmbH (GTZ)Google Scholar
Wantzen, K. M. and Junk, W. J. (2000). The importance of stream-wetland-systems for biodiversity: a tropical perspective. In Biodiversity in Wetlands, eds. Gopal, B., Junk, W. J., and Davis, J. A., Leiden, the Netherlands: Backhuys Publishers, pp. 11–34Google Scholar
Wassmann, R. and Martius, C. (1997). Methane emissions from the Amazon floodplains. In The Central Amazon Floodplain: Ecology of a Pulsing System, ed. Junk, W. J.. Ecological Studies 126. Berlin, Germany: Springer Verlag, pp. 137–46CrossRefGoogle Scholar
Wittmann, F., Junk, W. J., and Anhuf, D. (2002). Tree species distribution and community structure of Central Amazonian várzea forests by remote-sensing techniques. Journal of Tropical Ecology, 18(6), 805–20CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×