Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:15:28.040Z Has data issue: false hasContentIssue false

Chapter 4 - Hormonal Influences in Women with Epilepsy

Published online by Cambridge University Press:  19 December 2024

Esther Bui
Affiliation:
Toronto Western Hospital
P. Emanuela Voinescu
Affiliation:
Brigham & Women's Hospital, Boston, MA
Get access

Summary

Progesterone and estrogen influence neuronal activity and regulate seizures in women with epilepsy. The reproductive cycle-linked fluctuations in these hormones alter seizure frequency and manifest as cyclic seizure exacerbation. This seizure precipitation is classified as catamenial when seizures occur exclusively during one phase of the cycle or seizure frequency double during one phase of the cycle compared to other phases. Studies in experimental animals have focused on understanding molecular mechanisms underlying the perimenstrual increase in seizures, which relates to progesterone and mid-cycle increase related to estrogen. These studies have revealed that progesterone could exert an acute anticonvulsant effect. However, after repeated administration in chronic epilepsy models, progesterone appears to have no effect or even worsened seizure frequency. The anticonvulsant effects require its metabolite allopregnanolone, with rapid actions causing potentiation of the GABAA receptor-mediated inhibitory neurotransmission. On the other hand, the seizure-promoting effects rely on slower progesterone receptor-dependent enhancement of glutamatergic transmission. These complex and opposing effects help explain the unexpected lack of anticonvulsant efficacy of this hormone in a clinical trial and warrant the further characterization of the diversity of progesterone’s neuronal actions exerted through multiple cellular signaling molecules. In contrast to the dual effects of progesterone, estrogens, which peak in mid-cycle, primarily exert proconvulsant effects. Estrogens potentiate excitatory transmission. These seizure-promoting actions of estrogens are also evident in women with epilepsy, some of who may experience increased seizures during the follicular phase concomitant with the rising estrogen levels. Some of the neuromodulatory actions of estrogens are dependent on the activation of their cognate receptors, the estrogen receptors. The estrogen receptor block could exert neuroprotective and antiseizure effects.

Type
Chapter
Information
Women with Epilepsy
A Practical Management Handbook
, pp. 64 - 83
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stoffel-Wagner, B. Neurosteroid metabolism in the human brain. European Journal of Endocrinology. 2001;145(6):669–79.Google ScholarPubMed
Rupprecht, R, Rammes, G, Eser, D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science. 2009;325(5939):490–3.CrossRefGoogle ScholarPubMed
Avallone, R, Lucchi, C, Puja, G, et al. BV-2 microglial cells respond to rotenone toxic insult by modifying pregnenolone, 5α-dihydroprogesterone and pregnanolone levels. Cells. 2020;9(9):2091.CrossRefGoogle ScholarPubMed
Bixo, M, Bäckström, T, Winblad, B, Selstam, G, Andersson, A. Comparison between pre- and postovulatory distributions of oestradiol and progesterone in the brain of the PMSG-treated rat. Acta Physiol Scand. 1986;128(2):241–6.CrossRefGoogle ScholarPubMed
Selye, H. Anaesthetic effects of steroid hormones. Proc. Soc. Exp. Biol. Med. 1941;46:116–21.CrossRefGoogle Scholar
Klein, P, Van Passel-Clark, LM, Pezzullo, JC. Onset of epilepsy at the time of menarche. Neurology. 2003;60(3):495–7.CrossRefGoogle ScholarPubMed
Herzog, AG, Mandle, HB, MacEachern, DB. Does the age of seizure onset relate to menarche and does it matter? Seizure. 2019;69:16.CrossRefGoogle ScholarPubMed
Harden, CL, Pulver, MC, Ravdin, L, Jacobs, AR. The effect of menopause and perimenopause on the course of epilepsy. Epilepsia. 1999;40(10):1402–7.CrossRefGoogle ScholarPubMed
Harden, CL, Herzog, AG, Nikolov, BG, et al. Hormone replacement therapy in women with epilepsy: A randomized, double-blind, placebo-controlled study. Epilepsia. 2006;47(9):1447–51.CrossRefGoogle ScholarPubMed
Logothetis, J, Harner, R, Morrell, F, Torres, F. The role of estrogens in catamenial exacerbation of epilepsy. Neurology. 1959;9(5):352–60.CrossRefGoogle ScholarPubMed
Bäckström, T. Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurologica Scandinavica. 1976;54(4):321–47.CrossRefGoogle ScholarPubMed
Herzog, AG, Klein, P, Ransil, BJ. Three patterns of catamenial epilepsy. Epilepsia. 1997;38(10):1082–8.CrossRefGoogle ScholarPubMed
Herzog, AG, Seibel, MM, Schomer, DL, Vaitukaitis, JL, Geschwind, N. Reproductive endocrine disorders in women with partial seizures of temporal lobe origin. Arch Neurol. 1986;43(4):341–6.Google ScholarPubMed
Bilo, L, Meo, R, Valentino, R, et al. Characterization of reproductive endocrine disorders in women with epilepsy. J Clin Endocrin Metab. 2001;86(7):2950–6.CrossRefGoogle ScholarPubMed
Bauer, J, Isojärvi, JIT, Herzog, AG, et al. Reproductive dysfunction in women with epilepsy: Recommendations for evaluation and management. J Neurol Neurosurg Psych. 2002;73(2):121.CrossRefGoogle ScholarPubMed
Quigg, M, Fowler, KM, Herzog, AG, et al. Circalunar and ultralunar periodicities in women with partial seizures. Epilepsia. 2008;49(6):1081–5.CrossRefGoogle ScholarPubMed
Quigg, M, Smithson, SD, Fowler, KM, et al. Laterality and location influence catamenial seizure expression in women with partial epilepsy. Neurology. 2009;73(3):223–7.CrossRefGoogle ScholarPubMed
Herzog, AG, Fowler, KM, Smithson, SD, et al. Progesterone vs. placebo therapy for women with epilepsy: A randomized clinical trial. Neurology. 2012;78(24):1959–66.CrossRefGoogle ScholarPubMed
Woolley, DE, Timiras, PS. The gonad–brain relationship: Effects of female sex hormones on electroshock convulsions in the rat. Endocrinology. 1962;70(2):196209.CrossRefGoogle ScholarPubMed
Finn, DA, Gee, KW. The estrus cycle, sensitivity to convulsants and the anticonvulsant effect of a neuroactive steroid. J Pharmacol Exp Therap. 1994;271(1):164–70.Google ScholarPubMed
Tan, M, Tan, U. Sex difference in susceptibility to epileptic seizures in rats: Importance of estrous cycle. Int J Neurosci. 2001;108(3–4):175–91.CrossRefGoogle ScholarPubMed
Maguire, JL, Stell, BM, Rafizadeh, M, Mody, I. Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci. 2005;8(6):797804.CrossRefGoogle ScholarPubMed
Li, J, Leverton, LK, Naganatanahalli, LM, Christian-Hinman, CA. Seizure burden fluctuates with the female reproductive cycle in a mouse model of chronic temporal lobe epilepsy. Exp Neurol. 2020;334:113492.CrossRefGoogle Scholar
Scharfman, HE, Malthankar-Phatak, GH, Friedman, D, et al. A rat model of epilepsy in women: A tool to study physiological interactions between endocrine systems and seizures. Endocrinology. 2009;150(9):4437–42.CrossRefGoogle ScholarPubMed
Joshi, S, Sun, H, Rajasekaran, K, et al. A novel therapeutic approach for treatment of catamenial epilepsy. Neurobiol Dis. 2018;111:127–37.CrossRefGoogle ScholarPubMed
Reddy, DS, Kim, HY, Rogawski, MA. Neurosteroid withdrawal model of perimenstrual catamenial epilepsy. Epilepsia. 2001;42:328–36.CrossRefGoogle ScholarPubMed
Lawrence, C, Martin, BS, Sun, C, Williamson, J, Kapur, J. Endogenous neurosteroid synthesis modulates seizure frequency. Ann. Neurol. 2010;67(5):689–93.CrossRefGoogle ScholarPubMed
Shiono, S, Williamson, J, Kapur, J, Joshi, S. Progesterone receptor activation regulates seizure susceptibility. Ann Clin Trans Neurol. 2019;6(7):1302–10.CrossRefGoogle ScholarPubMed
Shiono, S, Sun, H, Batabyal, T, et al. Limbic progesterone receptor activity enhances neuronal excitability and seizures. Epilepsia. 2021;62(8):1946–59.CrossRefGoogle ScholarPubMed
Reddy, DS, Mohan, A. Development and persistence of limbic epileptogenesis are impaired in mice lacking progesterone receptors. J Neurosci. 2011;31(2):650–8.CrossRefGoogle ScholarPubMed
Herzog, AG, Mandle, HB, Cahill, KE, Fowler, KM, Hauser, WA. Differential impact of contraceptive methods on seizures varies by antiepileptic drug category: Findings of the Epilepsy Birth Control Registry. Epilepsy Beh. 2016;60:112–17.Google ScholarPubMed
Mandle, HB, Cahill, KE, Fowler, KM, et al. Reasons for discontinuation of reversible contraceptive methods by women with epilepsy. Epilepsia. 2017;58(5):907–14.CrossRefGoogle ScholarPubMed
Dana-Haeri, J, Richens, A. Effect of norethisterone on seizures associated with menstruation. Epilepsia. 1983;24(3):377–81.CrossRefGoogle ScholarPubMed
Kokate, TG, Cohen, AL, Karp, E, Rogawski, MA. Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology. 1996;35(8):1049–56.CrossRefGoogle ScholarPubMed
Frye, CA, Scalise, TJ, Bayon, LE. Finasteride blocks the reduction in ictal activity produced by exogenous estrous cyclicity. J Neuroendocrinol. 1998;10(4):291–6.CrossRefGoogle ScholarPubMed
Kokate, TG, Banks, MK, Magee, T, Yamaguchi, S, Rogawski, MA. Finasteride, a 5α-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther. 1999;288(2):679–84.Google ScholarPubMed
Frye, CA, Scalise, TJ. Anti-seizure effects of progesterone and α,5α-THP in kainic acid and perforant pathway models of epilepsy. Psychoneuroendocrinology. 2000;25(4):407–20.CrossRefGoogle Scholar
Reddy, DS, Castaneda, DC, O’Malley, BW, Rogawski, MA. Anticonvulsant activity of progesterone and neurosteroids in progesterone receptor knockout mice. J Pharmacol Exp Therap. 2004;310(1):230–9.CrossRefGoogle ScholarPubMed
Frye, CA, Manjarrez, J, Camacho-Arroyo, I. Infusion of 3α,5α-THP to the pontine reticular formation attenuates PTZ-induced seizures. Brain Res. 2000;881(1):98102.CrossRefGoogle Scholar
Frye, C, Rhodes, M, Walf, A, Harney, J. Progesterone reduces pentylenetetrazol-induced ictal activity of wild-type mice but not those deficient in type I 5α-reductase. Epilepsia. 2002;43:1417.CrossRefGoogle Scholar
Reddy, DS, Ramanathan, G. Finasteride inhibits the disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Epilepsy Behav. 2012;25(1):92–7.Google Scholar
Stell, BM, Brickley, SG, Tang, CY, Farrant, M, Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl. Acad. Sci. U. S. A. 2003;100(24):14439–44.CrossRefGoogle ScholarPubMed
Peng, Z, Huang, CS, Stell, BM, Mody, I, Houser, CR. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 2004;24(39):8629–39.CrossRefGoogle Scholar
Sun, C, Mtchedlishvilli, Z, Erisir, A, Kapur, J. Diminished neurosteroid sensitivity of synaptic inhibition and altered location of the α4 subunit of GABAA receptors in an animal model of epilepsy. J Neurosci. 2007;27(46):12641–50.CrossRefGoogle Scholar
Zhang, N, Wei, W, Mody, I, Houser, CR. Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci. 2007;27(28):7520–31.CrossRefGoogle Scholar
Kokate, TG, Svensson, BE, Rogawski, MA. Anticonvulsant activity of neurosteroids: Correlation with gamma-aminobutyric acid-evoked chloride current potentiation. J Pharmacol. Exp. Ther. 1994;270(3):1223–9.Google ScholarPubMed
Saxena, NC, MacDonald, RL. Assembly of GABAA receptor subunits: Role of the delta subunit. J Neurosci. 1994;14(11 Pt 2):7077–86.CrossRefGoogle ScholarPubMed
Bianchi, MT, MacDonald, RL. Neurosteroids shift partial agonist activation of GABA(A) receptor channels from low- to high-efficacy gating patterns. J Neurosci. 2003;23(34):10934–43.CrossRefGoogle ScholarPubMed
Glykys, J, Mann, EO, Mody, I. Which GABAA receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci. 2008;28(6):1421–6.CrossRefGoogle ScholarPubMed
Rajasekaran, K, Joshi, S, Sun, C, Mtchedlishvilli, Z, Kapur, J. Receptors with low affinity for neurosteroids and GABA contribute to tonic inhibition of granule cells in epileptic animals. Neurobiol Dis. 2010;40(2):490501.CrossRefGoogle ScholarPubMed
Mtchedlishvili, Z, Bertram, EH, Kapur, J. Diminished allopregnanolone enhancement of GABAA receptor currents in a rat model of chronic temporal lobe epilepsy. J Physiol. 2001;537(Pt 2):453–65.CrossRefGoogle Scholar
Joshi, S, Rajasekaran, K, Williamson, J, Kapur, J. Neurosteroid-sensitive δ-GABAA receptors: A role in epileptogenesis? Epilepsia. 2017;58(3):494504.CrossRefGoogle Scholar
Joshi, S, Roden, WH, Kapur, J, Jansen, LA. Reduced neurosteroid potentiation of GABAA receptors in epilepsy and depolarized hippocampal neurons. Ann Clin Transl Neurol. 2020;7(4):527–42.CrossRefGoogle ScholarPubMed
Tan, C, Shard, C, Ranieri, E, et al. Mutations of protocadherin 19 in female epilepsy (PCDH19-FE) lead to allopregnanolone deficiency. Human Mol Gene. 2015;24(18):5250–9.CrossRefGoogle Scholar
Grabenstatter, HL, Cogswell, M, Cruz Del Angel, Y, et al. Effect of spontaneous seizures on GABAA receptor α4 subunit expression in an animal model of temporal lobe epilepsy. Epilepsia. 2014;55(11):1826–33.CrossRefGoogle Scholar
Lothman, EW, Stringer, JL, Bertram, EH. The dentate gyrus as a control point for seizures in the hippocampus and beyond. Epilepsy Res Suppl. 1992;7:301–13.Google ScholarPubMed
Pathak, HR, Weissinger, F, Terunuma, M, et al. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci. 2007;27(51):14012–22.CrossRefGoogle ScholarPubMed
Spelsberg, TC, Steggles, AW, O’Malley, BW. Progesterone-binding components of chick oviduct. 3. Chromatin acceptor sites. J Biol Chem. 1971;246(13):4188–97.CrossRefGoogle ScholarPubMed
Schrader, WT, O’Malley, BW. Progesterone-binding components of chick oviduct. IV. Characterization of purified subunits. J Biol Chem. 1972;247(1):51–9.Google ScholarPubMed
Brinton, RD, Thompson, RF, Foy, MR, et al. Progesterone receptors: Form and function in brain. Front Neuroendocrinol. 2008;29(2):313–39.CrossRefGoogle ScholarPubMed
Joshi, S, Kapur, J. Neurosteroid regulation of GABAA receptors: A role in catamenial epilepsy. Brain Res. 2018;1703:3140.CrossRefGoogle ScholarPubMed
Guerra-Araiza, C, Villamar-Cruz, O, González-Arenas, A, Chavira, R, Camacho-Arroyo, I. Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments. J Neuroendocrinol. 2003;15(10):984–90.CrossRefGoogle ScholarPubMed
Waters, EM, Torres-Reveron, A, McEwen, BS, Milner, TA. Ultrastructural localization of extranuclear progestin receptors in the rat hippocampal formation. J Comp Neurol. 2008;511(1):3446.CrossRefGoogle ScholarPubMed
Mitterling, KL, Spencer, JL, Dziedzic, N, et al. Cellular and subcellular localization of estrogen and progestin receptor immunoreactivities in the mouse hippocampus. J Comp Neurol. 2010;518(14):2729–43.CrossRefGoogle ScholarPubMed
Kumar, N, Koide, SS, Tsong, YY, Sundaram, K. Nestorone-«: A progestin with a unique pharmacological profile. Steroids. 2000;65(10):629–36.CrossRefGoogle ScholarPubMed
Kumar, N, Fagart, J, Liere, P, et al. Nestorone-« as a novel progestin for nonoral contraception: Structure–activity relationships and brain metabolism studies. Endocrinology. 2017;158(1):170–82.CrossRefGoogle ScholarPubMed
Scharfman, HE, Mercurio, TC, Goodman, JH, Wilson, MA, Maclusky, NJ. Hippocampal excitability increases during the estrous cycle in the rat: A potential role for brain-derived neurotrophic factor. J Neurosci. 2003;23(37):11641–52.CrossRefGoogle Scholar
Scharfman, HE, Goodman, JH, Rigoulot, MA, et al. Seizure susceptibility in intact and ovariectomized female rats treated with the convulsant pilocarpine. Exp Neurol. 2005;196(1):7386.CrossRefGoogle ScholarPubMed
Reddy, DS, Gangisetty, O, Wu, X. PR-independent neurosteroid regulation of α2-GABAA receptors in the hippocampus subfields. Brain Res. 2017;1659(S C):142–7.CrossRefGoogle Scholar
Veliskova, J. The role of estrogens in seizures and epilepsy: The bad guys or the good guys? Neuroscience. 2006;138(3):837–44.CrossRefGoogle ScholarPubMed
Woolley, CS. Estradiol facilitates kainic acid-induced, but not flurothyl-induced, behavioral seizure activity in adult female rats. Epilepsia. 2000;41(5):510–15.CrossRefGoogle Scholar
Ledoux, VA, Smejkalova, T, May, RM, Cooke, BM, Woolley, CS. Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci. 2009;29(5):1457–68.CrossRefGoogle ScholarPubMed
Horn, AC, Buterbaugh, GG. Estrogen alters the acquisition of seizures kindled by repeated amygdala stimulation or pentylenetetrazol administration in ovariectomized female rats. Epilepsia. 1986;27(2):103–8.CrossRefGoogle Scholar
Edwards, HE, Burnham, WM, Mendonca, A, Bowlby, DA, MacLusky, NJ. Steroid hormones affect limbic afterdischarge thresholds and kindling rates in adult female rats. Brain Res. 1999;838(1–2):136–50.CrossRefGoogle ScholarPubMed
Velíšková, J, Velíšek, L, Galanopoulou, AS, Sperber, EF. Neuroprotective effects of estrogens on hippocampal cells in adult female rats after status epilepticus. Epilepsia. 2000;41(s6):S30S35.CrossRefGoogle ScholarPubMed
Galanopoulou, AS, Alm, EM, Velı́šková, J. Estradiol reduces seizure-induced hippocampal injury in ovariectomized female but not in male rats. Neurosci Lett. 2003;342(3):201–5.CrossRefGoogle Scholar
Hoffman, GE, Moore, N, Fiskum, G, Murphy, AZ. Ovarian steroid modulation of seizure severity and hippocampal cell death after kainic acid treatment. Exp Neurol. 2003;182(1):124–34.CrossRefGoogle ScholarPubMed
Woolley, CS, Gould, E, Frankfurt, M, McEwen, BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. 1990;10(12):4035–9.CrossRefGoogle ScholarPubMed
Woolley, CS, McEwen, BS. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. 1993;336(2):293306.CrossRefGoogle ScholarPubMed
Woolley, CS, McEwen, BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.Google ScholarPubMed
Brake, WG, Alves, SE, Dunlop, JC, et al. Novel target sites for estrogen action in the dorsal hippocampus: An examination of synaptic proteins. Endocrinology. 2001;142(3):1284–9.CrossRefGoogle ScholarPubMed
Waters, EM, Mitterling, K, Spencer, JL, et al. Estrogen receptor alpha and beta specific agonists regulate expression of synaptic proteins in rat hippocampus. Brain Res. 2009;1290:111.CrossRefGoogle ScholarPubMed
Yokomaku, D, Numakawa, T, Numakawa, Y, et al. Estrogen enhances depolarization-induced glutamate release through activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons. Mol Endocrinol. 2003;17(5):831–44.CrossRefGoogle ScholarPubMed
Foy, MR, Xu, J, Xie, X, et al. 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. J Neurophysiol. 1999;81(2):925–9.CrossRefGoogle ScholarPubMed
Smith, CC, McMahon, LL. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J Neurosci. 2006;26(33):8517–22.CrossRefGoogle ScholarPubMed
Teyler, TJ, Vardaris, RM, Lewis, D, Rawitch, AB. Gonadal steroids: Effects on excitability of hippocampal pyramidal cells. Science. 1980;209(4460):1017–18.CrossRefGoogle ScholarPubMed
Oberlander, JG, Woolley, CS. 17β-Estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. J Neurosci. 2016;36(9):2677–90.CrossRefGoogle ScholarPubMed
Wong, M, Moss, RL. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. J Neurosci. 1992;12(8):3217–25.CrossRefGoogle ScholarPubMed
Wallis, CJ, Luttge, WG. Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat brain. J Neurochem. 1980;34(3):609–13.CrossRefGoogle ScholarPubMed
O’Connor, LH, Nock, B, McEwen, BS. Regional specificity of GABAA receptor regulation by estradiol. Neuroendocrinology. 1988;47(6):473–81.CrossRefGoogle ScholarPubMed
Weiland, NG, Orikasa, C, Hayashi, S, McEwen, BS. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J Comp Neurol. 1997;388(4):603–12.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Milner, TA, McEwen, BS, Hayashi, S, et al. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol. 2001;429(3):355–71.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Kalita, K, Szymczak, S, Kaczmarek, L. Non-nuclear estrogen receptor β and α in the hippocampus of male and female rats. Hippocampus. 2005;15(3):404–12.CrossRefGoogle ScholarPubMed
Milner, TA, Ayoola, K, Drake, CT, et al. Ultrastructural localization of estrogen receptor β immunoreactivity in the rat hippocampal formation. J Comp Neurol. 2005;491(2):8195.CrossRefGoogle ScholarPubMed
Weiser, MJ, Foradori, CD, Handa, RJ. Estrogen receptor beta in the brain: From form to function. Brain Res Rev. 2008;57(2):309–20.CrossRefGoogle ScholarPubMed
Almey, A, Milner, TA, Brake, WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Hormones Beh. 2015;74:125–38.Google ScholarPubMed
Shughrue, PJ, Lane, MV, Merchenthaler, I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J Comp Neurol. 1997;388(4):507–25.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Mitra, SW, Hoskin, E, Yudkovitz, J, et al. Immunolocalization of estrogen receptor β in the mouse brain: Comparison with estrogen receptor α. Endocrinology. 2003;144(5):2055–67.CrossRefGoogle ScholarPubMed
Day, M, Sung, A, Logue, S, Bowlby, M, Arias, R. Beta estrogen receptor knockout (BERKO) mice present attenuated hippocampal CA1 long-term potentiation and related memory deficits in contextual fear conditioning. Beh Brain Res. 2005;164(1):128–31.CrossRefGoogle ScholarPubMed
Velísková, J, De Jesus, G, Kaur, R, Velísek, L. Females, their estrogens, and seizures. Epilepsia. 2010;51(S3):141–4.CrossRefGoogle ScholarPubMed
Frye, CA, Ryan, A, Rhodes, M. Antiseizure effects of 3α-androstanediol and/or 17β-estradiol may involve actions at estrogen receptor β. Epilepsy Beh. 2009;16(3):418–22.Google ScholarPubMed
Wang, Z, Xie, R, Yang, X, et al. Female mice lacking ERβ display excitatory/inhibitory synaptic imbalance to drive the pathogenesis of temporal lobe epilepsy. Theranostics. 2021;11(12):6074–89.Google ScholarPubMed
Osborne, DM, Frye, CA. Estrogen increases latencies to seizures and levels of 5α-pregnan-3α-ol-20-one in hippocampus of wild-type, but not 5α-reductase knockout, mice. Epilepsy Beh. 2009;16(3):411–14.Google Scholar
Velísková, J, Velísek, L. Beta-estradiol increases dentate gyrus inhibition in female rats via augmentation of hilar neuropeptide Y. J Neurosci. 2007;27(22):6054–63.CrossRefGoogle ScholarPubMed
Leitinger, M, Trinka, E, Giovannini, G, et al. Epidemiology of status epilepticus in adults: A population-based study on incidence, causes, and outcomes. Epilepsia. 2019;60(1):5362.CrossRefGoogle Scholar
Dabrowska, N, Joshi, S, Williamson, J, et al. Parallel pathways of seizure generalization. Brain. 2019;142(8):2336–51.Google ScholarPubMed
Maguire, J, Mody, I. Neurosteroid synthesis-mediated regulation of GABAA receptors: Relevance to the ovarian cycle and stress. J Neurosci. 2007;27(9):2155–62.CrossRefGoogle Scholar
Sato, SM, Woolley, CS. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model. Elife. 2016;5:e12917.CrossRefGoogle ScholarPubMed
Kapur, J, MacDonald, RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci. 1997;17(19):7532–40.CrossRefGoogle ScholarPubMed
Naylor, DE, Liu, H, Wasterlain, CG. Trafficking of GABAA receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25(34):7724–33.CrossRefGoogle Scholar
Goodkin, HP, Joshi, S, Mtchedlishvili, Z, Brar, J, Kapur, J. Subunit-specific trafficking of GABAA receptors during status epilepticus. J Neurosci. 2008;28(10):2527–38.CrossRefGoogle ScholarPubMed
Terunuma, M, Xu, J, Vithlani, M, et al. Deficits in phosphorylation of GABAA receptors by intimately associated protein kinase C activity underlie compromised synaptic inhibition during status epilepticus. J Neurosci. 2008;28(2):376–84.CrossRefGoogle ScholarPubMed
Rogawski, MA, Loya, CM, Reddy, K, Zolkowska, D, Lossin, C. Neuroactive steroids for the treatment of status epilepticus. Epilepsia. 2013;54(6):93–8.CrossRefGoogle ScholarPubMed
Knight, EMP, Amin, S, Bahi-Buisson, N, et al. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022;21:417–27.CrossRefGoogle ScholarPubMed
Lappalainen, J, Chez, M, Sullivan, J, et al. A multicenter, open-label trial of ganaxolone in children with PCDH19 epilepsy (P5.236). Neurology. 2017;88.CrossRefGoogle Scholar
Rosenthal, ES, Claassen, J, Wainwright, MS, et al. Brexanolone as adjunctive therapy in super-refractory status epilepticus. Ann Neurol. 2017;82:342–52.CrossRefGoogle ScholarPubMed
Moran, MH, Smith, SS. Progesterone withdrawal I: Pro-convulsant effects. Brain Res. 1998;807:8490.CrossRefGoogle ScholarPubMed
Herzog, AG, Frye, CA. Seizure exacerbation associated with inhibition of progesterone metabolism. Ann Neurol. 2003;53:390–1.CrossRefGoogle ScholarPubMed
Laxer, K, Blum, D, Abou-Khalil, BW, et al. Assessment of ganaxolone’s anticonvulsant activity using a randomized, double-blind, presurgical trial design. Ganaxolone Presurgical Study Group. Epilepsia. 2000;41:1187–94.CrossRefGoogle ScholarPubMed
Pieribone, VA, Tsai, J, Soufflet, C, et al. Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia. 2007;48:1870–4.CrossRefGoogle ScholarPubMed
Sperling, MR, Klein, P, Tsai, J. Randomized, double-blind, placebo-controlled phase 2 study of ganaxolone as add-on therapy in adults with uncontrolled partial-onset seizures. Epilepsia. 2017;58:558–64.CrossRefGoogle ScholarPubMed
Kerrigan, JF, Shields, WD, Nelson, TY, et al. Ganaxolone for treating intractable infantile spasms: A multicenter, open-label, add-on trial. Epilepsy Res. 2000;42:133–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×