Book contents
- Frontmatter
- Contents
- Preface
- List of Abbreviations
- List of Notation
- 1 Overview of Wireless Communications
- 2 Path Loss and Shadowing
- 3 Statistical Multipath Channel Models
- 4 Capacity of Wireless Channels
- 5 Digital Modulation and Detection
- 6 Performance of Digital Modulation over Wireless Channels
- 7 Diversity
- 8 Coding for Wireless Channels
- 9 Adaptive Modulation and Coding
- 10 Multiple Antennas and Space-Time Communications
- 11 Equalization
- 12 Multicarrier Modulation
- 13 Spread Spectrum
- 14 Multiuser Systems
- 15 Cellular Systems and Infrastructure-Based Wireless Networks
- 16 Ad Hoc Wireless Networks
- Appendix A Representation of Bandpass Signals and Channels
- Appendix B Probability Theory, Random Variables, and Random Processes
- Appendix C Matrix Definitions, Operations, and Properties
- Appendix D Summary of Wireless Standards
- Bibliography
- Index
1 - Overview of Wireless Communications
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- List of Abbreviations
- List of Notation
- 1 Overview of Wireless Communications
- 2 Path Loss and Shadowing
- 3 Statistical Multipath Channel Models
- 4 Capacity of Wireless Channels
- 5 Digital Modulation and Detection
- 6 Performance of Digital Modulation over Wireless Channels
- 7 Diversity
- 8 Coding for Wireless Channels
- 9 Adaptive Modulation and Coding
- 10 Multiple Antennas and Space-Time Communications
- 11 Equalization
- 12 Multicarrier Modulation
- 13 Spread Spectrum
- 14 Multiuser Systems
- 15 Cellular Systems and Infrastructure-Based Wireless Networks
- 16 Ad Hoc Wireless Networks
- Appendix A Representation of Bandpass Signals and Channels
- Appendix B Probability Theory, Random Variables, and Random Processes
- Appendix C Matrix Definitions, Operations, and Properties
- Appendix D Summary of Wireless Standards
- Bibliography
- Index
Summary
Wireless communications is, by any measure, the fastest growing segment of the communications industry. As such, it has captured the attention of the media and the imagination of the public. Cellular systems have experienced exponential growth over the last decade and there are currently about two billion users worldwide. Indeed, cellular phones have become a critical business tool and part of everyday life in most developed countries, and they are rapidly supplanting antiquated wireline systems in many developing countries. In addition, wireless local area networks currently supplement or replace wired networks in many homes, businesses, and campuses. Many new applications – including wireless sensor networks, automated highways and factories, smart homes and appliances, and remote telemedicine – are emerging from research ideas to concrete systems. The explosive growth of wireless systems coupled with the proliferation of laptop and palmtop computers suggests a bright future for wireless networks, both as stand-alone systems and as part of the larger networking infrastructure. However, many technical challenges remain in designing robust wireless networks that deliver the performance necessary to support emerging applications. In this introductory chapter we will briefly review the history of wireless networks from the smoke signals of the pre-industrial age to the cellular, satellite, and other wireless networks of today. We then discuss the wireless vision in more detail, including the technical challenges that must still be overcome.
- Type
- Chapter
- Information
- Wireless Communications , pp. 1 - 26Publisher: Cambridge University PressPrint publication year: 2005
- 4
- Cited by