Book contents
- Frontmatter
- Contents
- Preface
- Chapter 1 Introduction
- Chapter 2 Basic theory of cyclotron masers (CMs)
- Chapter 3 Linear theory of the cyclotron instability (CI)
- Chapter 4 Backward wave oscillator (BWO) regime in CMs
- Chapter 5 Nonlinear wave–particle interactions for a quasi-monochromatic wave
- Chapter 6 Nonlinear interaction of quasi-monochromatic whistler-mode waves with gyroresonant electrons in an inhomogeneous plasma
- Chapter 7 Wavelet amplification in an inhomogeneous plasma
- Chapter 8 Quasi-linear theory of cyclotron masers
- Chapter 9 Non-stationary CM generation regimes, and modulation effects
- Chapter 10 ELF/VLF noise-like emissions and electrons in the Earth's radiation belts
- Chapter 11 Generation of discrete ELF/VLF whistler-mode emissions
- Chapter 12 Cyclotron instability of the proton radiation belts
- Chapter 13 Cyclotron masers elsewhere in the solar system and in laboratory plasma devices
- Epilogue
- Systems of units, conversion factors and useful numerical values
- Glossary of terms
- Abbreviations and acronyms
- Bibliography
- Index
Chapter 13 - Cyclotron masers elsewhere in the solar system and in laboratory plasma devices
Published online by Cambridge University Press: 02 May 2010
- Frontmatter
- Contents
- Preface
- Chapter 1 Introduction
- Chapter 2 Basic theory of cyclotron masers (CMs)
- Chapter 3 Linear theory of the cyclotron instability (CI)
- Chapter 4 Backward wave oscillator (BWO) regime in CMs
- Chapter 5 Nonlinear wave–particle interactions for a quasi-monochromatic wave
- Chapter 6 Nonlinear interaction of quasi-monochromatic whistler-mode waves with gyroresonant electrons in an inhomogeneous plasma
- Chapter 7 Wavelet amplification in an inhomogeneous plasma
- Chapter 8 Quasi-linear theory of cyclotron masers
- Chapter 9 Non-stationary CM generation regimes, and modulation effects
- Chapter 10 ELF/VLF noise-like emissions and electrons in the Earth's radiation belts
- Chapter 11 Generation of discrete ELF/VLF whistler-mode emissions
- Chapter 12 Cyclotron instability of the proton radiation belts
- Chapter 13 Cyclotron masers elsewhere in the solar system and in laboratory plasma devices
- Epilogue
- Systems of units, conversion factors and useful numerical values
- Glossary of terms
- Abbreviations and acronyms
- Bibliography
- Index
Summary
In previous chapters we have analysed both whistler and Alfvén cyclotron masers under the conditions appropriate for the Earth's magnetosphere. We have seen that the main role of these CMs is the regulation of the energetic charged particle population in the radiation belts. It is natural to anticipate that similar processes take place for other planets in the solar system, which have their own magnetic fields. Wave–particle measurements taken by spacecraft visiting Jupiter and Saturn have confirmed the possibility of whistler CM operation there. Most information has been obtained about Jupiter's magnetosphere; we shall consider in Section 13.1 some new effects of whistler CM operation which are due to the specific features of the Jovian radiation belts.
Whistler-mode cyclotron masers operate in the solar corona. The gigantic scales of solar magnetic loops and the very dense cold plasma background, which determines the collisional damping of whistler waves, lead to the very effective exchange of energy between cold and hot plasma components and to the explosive character of the cyclotron instability.
Another important problem concerns the modelling of CM operation in laboratory magnetic traps, which allow us to check many theoretical predictions and conclusions. Section 13.3 gives a short review of this topic.
Whistler-mode cyclotron maser and the Jovian electron radiation belts
The Jovian magnetosphere has many similar features to the Earth's magnetosphere, including the interaction with the solar wind and the formation of the radiation belts.
- Type
- Chapter
- Information
- Whistler and Alfvén Mode Cyclotron Masers in Space , pp. 283 - 301Publisher: Cambridge University PressPrint publication year: 2008