Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:57:32.428Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2014

Oliver Bühler
Affiliation:
New York University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Waves and Mean Flows , pp. 354 - 357
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D. G., and McIntyre, M. E. 1976a. Planetary waves in horizontal and vertical shear: asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 2049–2053.2.0.CO;2>CrossRefGoogle Scholar
Andrews, D. G., and McIntyre, M. E. 1976b. Planetary waves in horizontal and vertical shear: the generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.2.0.CO;2>CrossRefGoogle Scholar
Andrews, D. G., and McIntyre, M. E. 1978a. An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Meeh., 89, 609–646.Google Scholar
Andrews, D. G., and McIntyre, M. E. 1978b. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric flows in compressible atmospheres. J. Atmos. Sei., 35, 175–185.Google Scholar
Andrews, D. G., and McIntyre, M. E. 1978c. On wave-action and its relatives. J. Fluid Meeh., 89, 647–664.Google Scholar
Andrews, D. G., Holton, J. R., and Leovy, C. B. 1987. Middle Atmosphere Dynamics. Academic Press.Google Scholar
Arnold, V. I., and Khesin, B. A. 1998. Topological Methods in Hydrodynamics. Springer.Google Scholar
Badulin, S. I., and Shrira, V. I. 1993. On the irreversibility of internal waves dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis. J. Fluid Mech., 251, 21–53.CrossRefGoogle Scholar
Baines, P. G. 1995. Topographic Effects in Stratified Flows. Cambridge: Cambridge University Press.Google Scholar
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi, M. 2001. The quasi-biennial oscillation. Revs. Geophys., 39, 179–229.CrossRefGoogle Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Booker, J. R., and Bretherton, F. P. 1967. The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539.CrossRefGoogle Scholar
Boyd, J. 1976. The noninteraction of waves with the zonally-averaged flow on a spherical earth and the interrelationships of eddy fluxes of energy, heat and momentum. J. Atmos. Sci., 33, 2285–2291.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, F. P. 1969. On the mean motion induced by internal gravity waves. J. Fluid Mech., 36, 785–803.CrossRefGoogle Scholar
Bretherton, F. P., and Garrett, C. J. R. 1968. Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. Lond., A302, 529–554.Google Scholar
Bühler, O. 2000. On the vorticity transport due to dissipating or breaking waves in shallow-water flow. J. Fluid Mech., 407, 235–263.CrossRefGoogle Scholar
Buühler, O. 2006. A Brief Introduction to Classical, Statistical, and Quantum Mechanics. Courant Lecture Notes, vol. 13. American Mathematical Society.Google Scholar
Bühler, O. 2007. Impulsive fluid forcing and water strider locomotion. J. Fluid Mech., 573, 211–236.CrossRefGoogle Scholar
Bühler, O. 2009. Wave-vortex interactions. In: Flor, J.B. (ed), Fronts, Waves and Vortices in Geophysics. Lectures Notes in Physics, no. 805. Springer.Google Scholar
Buühler, O., and Jacobson, T. E. 2001. Wave-driven currents and vortex dynamics on barred beaches. J. Fluid Mech., 449, 313–339.CrossRefGoogle Scholar
Bühler, O., and McIntyre, M. E. 1998. On non-dissipative wave-mean interactions in the atmosphere or oceans. J. Fluid Mech., 354, 301–343.CrossRefGoogle Scholar
Bühler, O., and McIntyre, M. E. 2003. Remote recoil: a new wave-mean interaction effect. J. Fluid Mech., 492, 207–230.CrossRefGoogle Scholar
Bühler, O., and McIntyre, M. E. 2005. Wave capture and wave-vortex duality. J. Fluid Mech., 534, 67–95.CrossRefGoogle Scholar
Centurioni, L. R. 2002. Dynamics of vortices on a uniformly shelving beach. J. Fluid Mech., 472, 211–228.CrossRefGoogle Scholar
Church, J. C., and Thornton, E. B. 1993. Effects of breaking wave induced turbulence within a longshore current model. Coastal Eng., 20, 1–28.CrossRefGoogle Scholar
Courant, R., and Hilbert, D. 1989. Methods of Mathematical Physics, vol. 2. Wiley-Interscience.Google Scholar
Craik, A.D.D. 1985. Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
Drazin, P.G., and Su, C.H. 1975. A note on long-wave theory of airflow over a mountain. J. Atmos. Sciences, 32, 437–439.2.0.CO;2>CrossRefGoogle Scholar
Dritschel, D. G., and McIntyre, M. E. 2008. Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci, 65, 855–874.CrossRefGoogle Scholar
Dysthe, K. B. 2001. Refraction of gravity waves by weak current gradients. Journal of Fluid Mechanics, 442(Sept.), 157–159.CrossRefGoogle Scholar
Foias, C., Holm, D.D., and E.S., Titi. 2001. The Navier-Stokes-alpha model of fluid turbulence. Physica D, 152, 505–519.Google Scholar
Grianik, N., Held, I. M., Smith, K. S., and Vallis, G. K. 2004. The effects of quadratic drag on the inverse cascade of two-dimensional turbulence. Physics of Fluids, 16, 73–78.CrossRefGoogle Scholar
Hasha, A. E., Buühler, O., and Scinocca, J.F. 2008. Gravity-wave refraction by three-dimensionally varying winds and the global transport of angular momentum. J. Atmos.Sci., 65, 2892–2906.CrossRefGoogle Scholar
Hayes, W. D. 1970. Conservation of action and modal wave action. Proc. Roy. Soc. Lond., A320, 187–208.Google Scholar
Haynes, P. H. 2003. Critical layers. In: Holton, J. R., Pyle, J. A., and Curry, J. A. (eds), Encyclopedia of Atmospheric Sciences. London, Academic/Elsevier.Google Scholar
Haynes, P. H., and Anglade, J. 1997. The vertical-scale cascade of atmospheric tracers due to large-scale differential advection. J. Atmos. Sci., 54, 1121–1136.2.0.CO;2>CrossRefGoogle Scholar
Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G., and Shine, K. P. 1991. On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651–678.2.0.CO;2>CrossRefGoogle Scholar
Hinch, E. J. 1991. Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Hinds, A. K., Johnson, E. R., and McDonald, N. R. 2007. Vortex scattering by step topography. Journal ofFluid Mechanics, 571, 495–505.CrossRefGoogle Scholar
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W. 1985. On the use and significance of isentropic potential-vorticity maps. Q. J. Roy. Meteorol. Soc., 111, 877–946.CrossRefGoogle Scholar
Johnson, E. R., Hinds, A. K., and McDonald, N. R. 2005. Steadily translating vortices near step topography. Physics ofFluids, 17, 6601.CrossRefGoogle Scholar
Jones, W. L. 1967. Propagation of internal gravity waves in fluids with shear flow and rotation. J. Fluid Mech., 30, 439–448.CrossRefGoogle Scholar
Jones, W. L. 1969. Ray tracing for internal gravity waves. J. Geophys. Res., 74, 2028–2033.CrossRefGoogle Scholar
Keller, J. B. 1978. Rays, waves and asymptotics. Bulletin of the American Mathematical Society, 84(5), 727–750.CrossRefGoogle Scholar
Killworth, P. D., and McIntyre, M. E. 1985. Do Rossby-wave critical layers absorb, reflect, or over-reflect?J. Fluid Mechanics, 161, 449–492.CrossRefGoogle Scholar
Landau, L. D., and Lifshitz, E. M. 1959. Fluid Mechanics. 1st Eng. ed. Pergamon.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1982. Mechanics. 3rd Eng. ed. Butterworth-Heinemann.Google Scholar
Leibovich, S. 1980. On wave-current interaction theories of Langmuir circulations. J. Fluid Mech., 99, 715–724.CrossRefGoogle Scholar
Leibovich, S. 1983. The form and dynamics of Langmuir circulations. Ann. Rev. Fluid Mech., 15, 391–427.CrossRefGoogle Scholar
Lighthill, J. 1978. Waves in Fluids. Cambridge University Press.Google Scholar
Lindzen, R. S. 1981. Turbulence and stress owing to gravity wave and tidal break-down. J. Geophys. Res., 86, 9707–9714.CrossRefGoogle Scholar
Lindzen, R. S., and Holton, J. R. 1968. A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 1095–1107.2.0.CO;2>CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1970a. Longshore currents generated by obliquely incident sea waves 1. J. Geophys. Res., 75, 6778–6789.Google Scholar
Longuet-Higgins, M. S. 1970b. Longshore currents generated by obliquely incident sea waves 2. J. Geophys. Res., 75, 6790–6801.Google Scholar
Maas, L. R., and Lam, F. P. 1995. Geometric focusing of internal waves. J. Fluid Mech., 300, 1–41.CrossRefGoogle Scholar
Majda, A. J. 2003. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, vol. 9. American Mathematical Society.Google Scholar
Majda, A.J., and Wang, X. 2006. Non-Linear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press.CrossRefGoogle Scholar
McIntyre, M. E. 1980a. An introduction to the generalized Lagrangian-mean description of wave, mean-flow interaction. Pure Appl. Geophys., 118, 152–176.CrossRefGoogle Scholar
McIntyre, M. E. 1980b. Towards a Lagrangian-mean description of stratospheric circulations and chemical transports. Phil. Trans. Roy. Soc. Lond., A296, 129–148.Google Scholar
McIntyre, M. E. 1981. On the ‘wave momentum’ myth. J. Fluid Mech., 106, 331–347.CrossRefGoogle Scholar
McIntyre, M. E. 2008. Potential-vorticity inversion and the wave-turbulence jigsaw: some recent clarifications. Adv. Geosci., 15, 47–56.CrossRefGoogle Scholar
McIntyre, M. E., and Norton, W. A. 1990. Dissipative wave-mean interactions and the transport of vorticity or potential vorticity. J. Fluid Mech., 212, 403–435.CrossRefGoogle Scholar
McIntyre, M. E., and Weissman, M. A. 1978. On radiating instabilities and resonant overreflection. J. Atmos. Sci., 35, 1190–1198.2.0.CO;2>CrossRefGoogle Scholar
Morrison, P. J. 1998. Hamiltonian description of the ideal fluid. Reviews of Modern Physics, 70, 467–521.CrossRefGoogle Scholar
Nazarenko, S. V., Zabusky, N. J., and Scheidegger, T. 1995. Nonlinear sound-vortex interactions in an inviscid isentropic fluid: A two-fluid model. Phys. Fluids, 7, 2407–2419.CrossRefGoogle Scholar
Peregrine, D. H. 1998. Surf zone currents. Theoretical and Computational Fluid Dynamics, 10, 295–310.CrossRefGoogle Scholar
Peregrine, D. H. 1999. Large-scale vorticity generation by breakers in shallow and deep water. Eur. J. Mech. B/Fluids, 18, 403–408.CrossRefGoogle Scholar
Plougonven, R., and Snyder, C. 2005. Gravity waves excited by jets: propagation versus generation. Geophys. Res. Lett., 32, L18802.CrossRefGoogle Scholar
Plumb, R. A. 1977. The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 1847–1858.2.0.CO;2>CrossRefGoogle Scholar
Plumb, R. A., and McEwan, A. D. 1978. The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 1827–1839.2.0.CO;2>CrossRefGoogle Scholar
Polzin, K. L. 2008. Mesoscale eddy-internal wave coupling. I Symmetry, wave capture and results from the mid-ocean dynamics experiment. Journal of Physical Oceanography.CrossRefGoogle Scholar
Ruessink, B. G., Miles, J. R., Feddersen, F., Guza, R. T., and Elgar, S. 2001. Modeling the alongshore current on barred beaches. Journal of Geophysical Research, 106(C10), 22451–22463.CrossRefGoogle Scholar
Saffman, P. G. 1993. Vortex Dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Salmon, R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press.Google Scholar
Shaw, T.A., and Shepherd, T.G. 2008. Wave-activity conservation laws for the three-dimensional anelastic and Boussinesq equations with a horizontally homogeneous background flow. Journal of Fluid Mechanics, 594, 493–506.CrossRefGoogle Scholar
Shepherd, T. G. 1990. Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys., 32, 287–338.Google Scholar
Shepherd, T. G., and Shaw, T. A. 2004. The angular momentum constraint on climate sensitivity and downward influence in the middle atmosphere. J. Atmos. Sci., 61, 2899–2908.CrossRefGoogle Scholar
Spiegel, E. A., and Veronis, G. 1960. On the Boussinesq aproximation for a compressible fluid. Astrop. J., 131(Mar.), 442.CrossRefGoogle Scholar
Thorpe, S. A. 2004. Langmuir circulation. Ann. Rev. Fluid Mech., 36, 55–79.CrossRefGoogle Scholar
Vallis, G. K. 2006. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
Vanneste, J., and Shepherd, T. G. 1999. On wave action and phase in the non-canonical Hamiltonian formulation. Proc. Roy. Soc. Lond., 455, 3–21.CrossRefGoogle Scholar
Wallace, J. M., and Holton, J. R. 1968. A diagnostic numerical model of the quasi-biennial oscillation. J. Atmos. Sci., 25, 280–292.2.0.CO;2>CrossRefGoogle Scholar
Whitham, G. B. 1974. Linear and Nonlinear Waves. New York: Wiley-Interscience.Google Scholar
Young, W. R. 2010. Dynamic enthalpy, conservative temperature, and the seawater Boussinesq approximation. Journal of Physical Oceanography, 40, 394.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107478701.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107478701.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 05 April 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107478701.016
Available formats
×