Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T09:39:10.533Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  29 March 2010

Oliver Bühler
Affiliation:
New York University
Get access

Summary

The aim of this book

This book is on waves in fluids and on their interactions with mean flows such as shear flows or vortices. Such interactions are generally a two-way street, with the waves being affected by the mean flow whilst the mean flow itself responds to the presence of the waves. For instance, readily observed examples of waves affected by mean flows are surface waves propagating on a sheared river current, or ripples that are refracted by a bath-tub vortex. Mean flows that are responding to waves are slightly less easily observed, here examples are given by the classic phenomenon of acoustic streaming, by longshore currents driven by breaking waves on beaches, and, as it turns out, also by many other flows in the atmosphere and ocean. Not surprisingly, wave–mean interaction theory is a very important topic in geophysical fluid dynamics (GFD).

For instance, the wave-induced transport of mass, momentum, and angular momentum plays a crucial role for the long-term evolution of the global-scale circulation in the atmosphere and the ocean, and for such complex multi-scale phenomena as the stratospheric ozone hole. However, many waves that contribute significantly to this transport are much too small in scale to be resolvable by even the most powerful present-day supercomputers, which implies that these small-scale waves, and their interactions with the large-scale mean flow, must be ‘parametrized’ in numerical models, i.e., they must be put-in by hand based on a combination of theory and observational data.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 29 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605499.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 29 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605499.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Oliver Bühler, New York University
  • Book: Waves and Mean Flows
  • Online publication: 29 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511605499.001
Available formats
×