Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
10 - Relations between sap velocity and cavitation in broad-leaved trees
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
Summary
SUMMARY
Concurrent measurements of cavitation by the ultrasound acoustic emission technique and sap velocity by the thermoelectric heat pulse method were carried out in the field on three woody species (Quercus pubescens, Quercus ilex and Alnus cordatd) characterized by different wood structure. The plant water status was assessed by measuring xylem water potential and stomatal conductance. A good correspondence was found between the patterns of sap velocity and cavitation rate. A threshold-type relationship was observed, in Alnus cordata, between water flow and cavitation rate. In some cases temporal lags between ultrasound emission and sap velocity were observed: several factors may account for these lags, including the possibility that cavitation of xylem conduits may be a rather patchy phenomenon and that different xylematic volumes might have been sensed by the ultrasound and heat pulse transducers.
INTRODUCTION
The formation and spreading of gaseous emboli through the xylem are recognized as common events in water stressed plants (Milburn, 1979; Tyree & Sperry, 1989a). In particular, it is widely held that the increase of xylematic tension, which is caused by the drop of water potential between the soil and the atmosphere, frequently induces cavitation, i.e. the breakage of water columns and the formation of gas bubbles in the lumina of xylem conduits.
The mechanism of cavitation is still being debated, although the hypothesis that cavitation is caused by the aspiration of air bubbles through the intervessel pit membranes (the so-called air seeding hypothesis) is widely supported by experimental evidence (Sperry & Tyree, 1988; Sperry, Tyree & Donnelly, 1988).
- Type
- Chapter
- Information
- Water Transport in Plants under Climatic Stress , pp. 114 - 128Publisher: Cambridge University PressPrint publication year: 1993
- 4
- Cited by