Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
1 - Global change and plant water relations
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
Summary
SUMMARY
Physiological responses to elevated CO2 are discussed at leaf, plant and stand scale in the context of global change and their consequences for water relations at these scales evaluated. A distinction is drawn between short term responses and the responses shown by plants that are fully acclimated by extended periods of growth in a high CO2 environment.
Assimilation of CO2 and stomatal action are the best known processes dependent on CO2 at leaf scale and acclimation reduces their impact on growth, transpiration and water use efficiency.
At plant scale leaf and root growth are generally stimulated in high CO2 but the processes involved are poorly understood. The consequence may be increase in rate of both transpiration and water uptake. Control system based models explicitly including feedbacks offer a means of integrating multiple interacting limiting variables and of analysing sensitivity of processes to increase in CO2 concentration at both leaf and plant scale. To make use of such models to give helpful predictions, better definition of “pressure points” – the processes on which CO2 is known to act – is needed. Response of processes within the plant to elevated atmospheric CO2 is strongly influenced by coupling between leaves and atmosphere.
At the larger stand scale, this should be taken into account explicitly because the degree of coupling depends on the structure of the vegetation. Increase in leaf area will have a larger effect on transpiration from well coupled vegetation (e.g.tall crops, shrubs and trees) but may have little effect on transpiration from poorly coupled vegetation (e.g.short crops, grass lands, dwarf shrubs). […]
- Type
- Chapter
- Information
- Water Transport in Plants under Climatic Stress , pp. 1 - 13Publisher: Cambridge University PressPrint publication year: 1993
- 16
- Cited by