Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
29 - An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Global change and plant water relations
- 2 Cavitation. A review: past, present and future
- 3 Effect of cavitation on the status of water in plants
- 4 Stomatal control of xylem cavitation
- 5 Refilling of embolized xylem
- 6 Interpretation of the dynamics of plant water potential
- 7 A proposed mechanism of freezing and thawing in conifer xylem
- 8 Winter xylem embolism and spring recovery in Betula cordifolia, Fagus grandifolia, Abies balsamea and Picea rubens
- 9 Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees
- 10 Relations between sap velocity and cavitation in broad-leaved trees
- 11 NMR and water transport in plants
- 12 The symplast radial-axial water transport in plants: a NMR approach
- 13 Reproductive adaptation by polyembryony of coniferous forest trees under climatic stress as revealed by the metabolism of tritiated water
- 14 A heat balance method for measuring sap flow in small trees
- 15 Heat pulse measurements on beech (Fagus sylvatica L.) in relation to weather conditions
- 16 Extremely fast changes of xylem water flow rate in tall trees caused by atmospheric, soil and mechanic factors
- 17 Water relations and water transport in coppice vs. single stem Quercus cerris L. trees
- 18 Environmental control of water flux through Maritime pine (Pinus pinaster Ait).
- 19 Evaluation of transpiration of apple trees and measurement of daily course of water flow within the main branches of walnut trees
- 20 Estimating citrus orchard canopy resistance from measurements of actual and potential transpiration
- 21 Stomatal conductance in tomato responds to air humidity
- 22 Water relations of Canarian laurel forest trees
- 23 Watering regime and photosynthetic performance of Gunnera tinctoria (Molina) Mirbel.
- 24 Water relations and ultrasound emissions in Douglas-fir seedlings infected with xylem pathogens
- 25 Diurnal fruit shrinkage: a model
- 26 Analysis of pressure-volume curves by non-linear regression
- 27 Determination of the amount of apoplastic water and other water relations parameters in conifer needles
- 28 The assessment of water status in chilled plants
- 29 An artificial osmotic cell: a model system for studying phenomena of negative pressure and for determining concentrations of solutes
- 30 Measurement of water and solute uptake into excised roots at positive and negative root pressures
- Index
Summary
INTRODUCTION
For technical reasons, it is very difficult to measure negative pressures in the xylem of transpiring plants directly. An artificial osmotic cell has been constructed using reverse osmosis membranes to study phenomena of negative pressure (Steudle & Heydt, 1988; Zhu, Steudle & Beck, 1989). The cell has been also used as an analytical device (osmotic sensor; Steudle & Stumpf, 1989) to measure the concentration of certain solutes in solutions. The sensivity and selectivity of the osmometer could be increased by coupling the osmotic process to a chemical reaction.
MATERIAL AND METHODS
Reverse osmosis membranes were used to separate the cell interior from the medium. ‘Cell turgor’ was measured with the aid of a pressure transducer and was recorded continuously. The system was calibrated in the range of positive and negative pressures by applying gas pressures to both sides of the transducer membrane. During the experiments, the calibration and the proper function of the transducer could be checked (Steudle & Heydt, 1988). The thickness of the osmotic cell was 0.1 to 0.2 mm and the diameter 4 mm. The cell was filled with a non-permeating solute to build up a positive turgor in the presence of hypotonic solutions. In order to create negative pressures (tensions), the external medium was replaced by hypertonic solutions of non-permeating solutes.
RESULTS AND DISCUSSION
When permeating solutes were added to the medium, biphasic changes of turgor were observed. From these pressure-time curves, the hydraulic conductivity (Lp), the permeability (Ps), and the reflection (σs) coefficients of the membrane were evaluated.
- Type
- Chapter
- Information
- Water Transport in Plants under Climatic Stress , pp. 290 - 292Publisher: Cambridge University PressPrint publication year: 1993