Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-22T19:52:43.934Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2017

Hermann Brunner
Affiliation:
Hong Kong Baptist University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Volterra Integral Equations
An Introduction to Theory and Applications
, pp. 344 - 382
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N.H (1823), Solution de quelques problèmes à l'aide d'intégrales définies, Magazin Naturvidensk. 1, 55–68.Google Scholar
Abel, N.H (1826), Auflösung einer mechanischen Aufgabe, J. Reine Angew. Math. 1, 153–157.Google Scholar
Adams, R.A and J, F.Fournier (2003), Sobolev Spaces (Second Edition) (Amsterdam: Elsevier/Academic Press).
Adell, J.A and E, A.Gallardo-Gutièrrez (2007), The norm of the Riemann–Liouville operator on Lp[0, 1]: a probabilistic approach, Bull. London Math. Soc. 39, 565–574.Google Scholar
Agarwal, R.P and D, O'Regan (eds.) (2000), Integral and Integrodifferential Equations. Theory, Methods and Applications, Ser. Math. Anal. Appl. 2 (Amsterdam: Gordon and Breach).
Agarwal, R.P, D, O'Regan and P.J.V., Wong (2013), Constant-Sign Solutions of Systems of Integral Equations (New York: Springer).
Agyingi, E.O and C.T.H., Baker (2013), Derivation of variation of parameters formulas for non-linear Volterra equations, using a method of embedding, J. Integral Equations Appl. 25, 159–191.Google Scholar
Anderssen, R.S (1977), Application and numerical solution of Abel-type integral equations, MRC Tech. Summary Report 1787, Math. Research Center, University of Wisconsin, Madison.
Anderssen, R.S, A, R.Davies and F.R., de Hoog (2007), On the interconversion integral equation for relaxation and creep, ANZIAM J. 48, C346–C363.Google Scholar
Anderssen, R.S, A, R.Davies and F.R., de Hoog (2008), On the Volterra integral equation relating creep and relaxation, Inverse Problems 24, 035009, 13 pp.Google Scholar
Anderssen, R.S, A, R.Davies and F.R., de Hoog (2011), The effect of kernel perturbations when solving the interconversion convolution equation of linear viscoelasticity, Appl. Math. Lett. 24, 71–75.Google Scholar
Anderssen, R.S and F.R., de Hoog (1990), Abel integral equations, in Numerical Solution of Integral Equations (M, A.Golberg, ed.), pp. 373–410 (New York: Plenum Press).
Anderssen, R.S and F.R., de Hoog (2006), Regularization of first kind integral equations with applications to Couette viscometry, J. Integral Equations Appl. 18, 249–265.Google Scholar
Andreoli, G (1914), Sulle equazioni integrali, Rend. Circ. Mat. Palermo 37, 76–112.Google Scholar
Anello, G (2006), An existence theorem for an implicit integral equation with discontinuous right-hand side, J. Inequal. Appl., Art. ID 71396, 1–8.Google Scholar
Ang, D.D and R, Gorenflo (1991), A nonlinear Abel integral equation, in Optimal Control of Partial Differential Equations (Irsee 1990) (K.-H., Hoffmann and W, Krabs, eds.), pp. 26–37, Lecture Notes in Control and Inform. Sci. 149 (Berlin– New York: Springer-Verlag). [Extension of results in Branca (1978), Brunner & van der Houwen (1986), and Gorenflo & Vessella (1991); see also Gorenflo & Pfeiffer (1991).]
Angell, J.S (1985), Asymptotic Analysis of Singularly Perturbed Integral Equations, PhD thesis (Evanston, IL: Northwestern University).
Angell, J.S and W, E.Olmstead (1987), Singularly perturbed Volterra integral equations, SIAM J. Appl. Math. 47, 1–14.Google Scholar
Annunziato, M and E, Messina (2010), Numerical treatment of a Volterra integral equation with space maps, Appl. Numer. Math. 60, 809–815.Google Scholar
Annunziato, M, H, Brunner and E, Messina (2012), Asymptotic stability of solutions to Volterra-renewal integral equations with space maps, J. Math. Anal. Appl. 395, 766–775.Google Scholar
Anselone, P.M (ed.) (1964), Nonlinear Integral Equations (Madison 1963) (Madison: University of Wisconsin Press).
Apartsyn, A.S (2003), Nonclassical Linear Volterra Equations of the First Kind (Utrecht: VSP). [Theory of equations with variable upper and lower limit of integration.]
Apartsyn, A.S (2004), Polylinear Volterra equations of the first kind, Autom. Remote Control 65, 263–269.Google Scholar
Apartsyn, A.S (2008), Multilinear Volterra equations of the first kind and some control problems, Autom. Remote Control 69, 545–558.Google Scholar
Apartsyn, A.S (2014), On some classes of linear Volterra integral equations, Abstr. Appl. Anal. 2014, Art. ID 532409, 6 pp.Google Scholar
Apartsyn, A.S and I, V.Sidler (2013), Using nonclassical Volterra equations of the first kind to model developing systems, Autom. Remote Control 74, 899–910.Google Scholar
Appell, J and P, P.Zabrejko (1990), Nonlinear Superposition Operators (Cambridge University Press).
Appleby, J.A.D and D, W.Reynolds (2003), Non-exponential stability of scalar stochastic Volterra equations, Statist. Probab. Lett. 62, 335–343.Google Scholar
Appleby, J.A.D and M, Riedle (2010), Stochastic Volterra equations in weighted spaces, J. Integral Equations Appl. 22, 1–17.Google Scholar
Arias, M.R (2000), Existence and uniqueness of solutions for nonlinear Volterra equations, Math. Proc. Cambridge Philos. Soc. 129, 361–370.Google Scholar
Arias, M.R and R, Benítez (2003a), Properties of solutions for nonlinear Volterra integral equations, Discrete Contin. Dyn. Syst. suppl., 42–47.Google Scholar
Arias, M.R and R, Benítez (2003b), Aspects of the behaviour of solutions of nonlinear Abel equations, Nonlinear Anal. 54, 1241–1249.Google Scholar
Arias, M.R, R, Benítez and V, J.Bolós (2005), Nonconvolution nonlinear integral Volterra equations with monotone operators, Comput. Math. Appl. 50, 1405–1414.Google Scholar
Arias, M.R, R, Benítez and V, J.Bolós (2007), Attraction properties of unbounded solutions for a nonlinear Abel integral equation, J. Integral Equations Appl. 19, 439–452.CrossRefGoogle Scholar
Arias, M.R and J.M, F.Castillo (1999), Attracting solutions of nonlinear Volterra integral equations, J. Integral Equations Appl. 11, 299–309.Google Scholar
Artstein, Z (1975), Continuous dependence of solutions of Volterra integral equations, SIAM J. Math. Anal. 6, 446–456. [See also Gyllenberg (1981).]Google Scholar
Asanov, A (1998), Regularization, Uniqueness and Existence of Solutions of Volterra Equations of the First Kind (Zeist: VSP). [This monograph contains a comprehensive bibliography on Russian contributions.]
Askhabov, S.N (1991), Integral equations of convolution type with power nonlinearity, Colloq. Math. 62, 49–65.Google Scholar
Askhabov, S.N (2009), Nonlinear Equations of Convolution Type (in Russian) (Moscow: FIZMATLIT).
Askhabov, S.N and M, A.Betilgiriev (1993), A priori estimates for the solutions of a nonlinear integral equation of convolution type and their applications, Math. Notes 54, 1087–1092. [uα(t) = f (t) + t 0 k(t - s)u(s)ds, α >1.]Google Scholar
Askhabov, S.N and N, K.Karapetyants (1990), Integral equations of convolution type with power nonlinearity and systems of such equations, Soviet Math. Dokl. 41, 323–327.Google Scholar
Atkinson, K.E (1974), An existence theorem for Abel integral equations, SIAM J. Math. Anal. 5, 729–736. [Regularity of solutions to t 0 (t p - s p) -α y(s)ds = tβ g(t), β > -1, 0 < α < 1, p ≥ 1; g(0) _= 0.]Google Scholar
Atkinson, K.E (1976), A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind (Philadelphia, PA: Society for Industrial and Applied Mathematics).
Atkinson, K.E (1997), The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press).
Bai, F (2011), Collocation Methods for Weakly Singular Volterra Integral Equations with Vanishing Delays, MSc thesis (St John's: Memorial University of Newfoundland).
Baillon, J.-B. and Ph., Clément (1981), Ergodic theorems for nonlinear Volterra equations in Hilbert space, Nonlinear Anal. 5, 789–801.Google Scholar
Baker, C.T.H (1977), The Numerical Treatment of Integral Equations (Oxford: Clarendon Press).
Baker, C.T.H (2000), A perspective on the numerical treatment of Volterra integral equations, J. Comput. Appl. Math. 125, 201–215.Google Scholar
Baker, C.T.H, E, O.Agyingi, E, I.Parmuzin, F, A.Rihan and Y, Song (2006), Sense from sensitivity and variation of parameters, Appl. Numer. Math. 56, 397–412.Google Scholar
Bakke, V.L (1974), A maximum principle for an optimal control problem with integral constraints, J. Optimization Theory Appl. 13, 32–55.Google Scholar
Bakke, V.L (1976), Boundary arcs for integral equations, J. Optim. Theory Appl. 19, 425–433.Google Scholar
Banach, S (1932), Théorie des Opérations Linéaires (New York: Chelsea Publishing Co.; 1993 reprint of original edition: Sceaux, Éditions Jacques Gabay). [See Ch. X, pp. 145–164, for Volterra integral operators, also in Lp spaces. An English translation, Theory of Linear Operations (Amsterdam: North-Holland), appeared in 1987.]
Banás, J and J, Caballero Mena (2005), Some properties of nonlinear Volterra–Stieltjes integral operators, Comput. Math. Appl. 49, 1565–1573.Google Scholar
Banás, J and J, Dronka (2000), Integral operators of Volterra-Stieltjes type, their properties and applications, Math. Comput. Modelling 32, 1321–1331.Google Scholar
Banás, J and T, Zajac (2011), A new approach to the theory of functional integral equations of fractional order, J. Math. Anal. Appl. 375, 375–387. [Conversion of nonlinear VIE with weakly singular kernel into nonlinear Volterra–Stieltjes VIE.]Google Scholar
Bandle, C and H, Brunner (1998), Blow-up in diffusion equations: A survey, J. Comput. Appl. Math. 97, 3–22.Google Scholar
Barbu, V. (1979), Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal. 10, 552–569.Google Scholar
Bart, G.R and R, L.Warnock (1973), Linear integral equations of the third kind, SIAM J. Math. Anal. 4, 609–622.Google Scholar
Bateman, H (1910), Report on the history and present state of the theory of integral equations, Report to the British Association for the Advancement of Science (Sheffield, 1910), pp. 345–424.
Becker, L.C (2011), Resolvents and solutions of weakly singular linear Volterra integral equations, Nonlinear Anal. 74, 1892–1912.Google Scholar
Becker, L.C (2012), Resolvents for weakly singular kernels and fractional differential equations, Nonlinear Anal. 75, 4839–4861.Google Scholar
Becker, L.C (2013), Resolvents and solutions of singular Volterra integral equations with separable kernels, Appl. Math. Comp. 219, 11265–11277.Google Scholar
Bedivan, D.M and D, O'Regan (2000), Fixed point sets for abstract Volterra operators on Fréchet spaces, Appl. Anal. 76, 131–152.Google Scholar
Beesack, P.R (1969), Comparison theorems and integral inequalities for Volterra integral equations, Proc. Amer. Math. Soc. 20, 61–66.Google Scholar
Beesack, P.R (1985), Systems of multidimensional Volterra integral equations and inequalities, Nonlinear Anal. 9, 1451–1486.Google Scholar
Beesack, P.R (1987), On some variation of parameter methods for integrodifferential, integral and quasilinear partial integrodifferential equations, Appl. Math. Comput. 22, 189–215.Google Scholar
Bélair, J (1991), Population models with state-dependent delays, in Mathematical Population Dynamics (O., Arino, D, E.Axelrod and M, Kimmel, eds.), pp. 165–176 (New York: Marcel Dekker).
Belbas, S.A (1999), Iterative schemes for optimal control of Volterra integral equations, Nonlinear Anal. 37, 57–79.Google Scholar
Belbas, S.A (2008), Optimal control of Volterra integral equations in two independent variables, Appl. Math. Comput., 202, 647–665.Google Scholar
Belbas, S.A and W, H.Schmidt (2005), Optimal control of Volterra equations with impulses, Appl. Math. Comput. 166, 696–723.Google Scholar
Bellen, A and N, Guglielmi (2009), Solving neutral delay differential equations with state-dependent delay, J. Comput. Appl. Math. 229, 350–362.Google Scholar
Bellen, A, S, Maset, M., Zennaro and N, Guglielmi (2009), Recent trends in the numerical solution of retarded functional differential equations, Acta Numer. 18, 1–110.Google Scholar
Bellen, A and M., Zennaro (2003), NumericalMethods for Delay Differential Equations (Oxford University Press).
Bellman, R and K, L.Cooke (1963), Differential-Difference Equations (New York: Academic Press). [Chapters 7 and 8 deal with the theory of (systems of) renewal equations; compare also Math. Reviews, 26, #5259.]
Berg, L and L. v., Wolfersdorf (2005), On a class of generalized autoconvolution equations of the third kind, Z. Anal. Anwendungen 24, 217–250.Google Scholar
Berger, M.A. and V.J., Mizel (1980), Volterra equations with Itô integrals. I,II, J. Integral Equations 2, 187–245; 319–337.Google Scholar
Berger, M.S (1977), Nonlinearity and Functional Analysis (New York: Academic Press).
Bernfeld, S.R and M, E.Lord (1978), A nonlinear variation of constants method for integro-differential and integral equations, Appl. Math. Comp. 4, 1–14. [A correction of some of these results can be found in Beesack (1987). See also Agyingi & Baker (2012).]Google Scholar
Berrone, L.R (1995), Local positivity of the solution to Volterra integral equations and heat conduction in materials that may undergo changes of phase, Math. Notae 38, 79–93.Google Scholar
Bijura, A.M (2002a), Singularly perturbed Volterra integral equations with weakly singular kernels, Int. J. Math. Math. Sci. 30, 129–143.Google Scholar
Bijura, A.M (2002b), Singularly perturbed systems of Volterra equations, J. Appl. Anal. 8, 221–244.Google Scholar
Bijura, A.M (2002c), Rigorous results on the asymptotic solutions of singularly perturbed nonlinear Volterra integral equations, J. Integral Equations Appl. 14, 119–149. [See also the related survey paper (Kauthen, 1997).]Google Scholar
Bijura, A.M (2004), Error bound analysis and singularly perturbed Abel-Volterra equations, J. Appl. Math. 2004, 479–494.Google Scholar
Bijura, A.M (2006), Initial-layer theory and model equations of Volterra type, IMA J. Numer. Anal. 71, 315–331.Google Scholar
Bijura, A.M (2012), Systems of singularly perturbed fractional integral equations, J. Integral Equations Appl. 24, 195–211.Google Scholar
Birkhoff, G (ed.) (1973), A Source Book in Classical Analysis (Cambridge, MA: Harvard University Press). [Ch. 13: translations of the papers by Abel (1826), Volterra (1896), and Fredholm (1903).]
Blom, J.G and H, Brunner (1987), The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods, SIAM J. Sci. Comput. 8, 806–830.Google Scholar
Blom, J.G and H, Brunner (1991), Algorithm 689: Discretized collocation and iterated collocation for nonlinear Volterra integral equations, ACM Trans. Math. Software 17, 183–190.Google Scholar
Bôcher, M (1909), An Introduction to the Study of Integral Equations, Cambridge Tracts in Mathematics and Mathematical Physics, No. 10 (Cambridge, MA: Cambridge University Press; 1971 reprint of second edition (1914): New York: Haffner Publishing Co.).
Böttcher, A, H., Brunner, A., Iserles and S, P.Nørsett (2010), On the singular values and eigenvalues of the Fox-Li and related operators, New York J. Math. 16, 539–561.Google Scholar
Böttcher, A and P, Dörfler (2009), On the best constants in inequalities of the Markov and Wirtinger types for polynomials on the half-line, Linear Algebra Appl. 430, 1057–1069.Google Scholar
Böttcher, A and P, Dörfler (2010a), Weighted Markov-type inequalities, norms of Volterra operators, and zeros of Bessel functions, Math. Nachr. 283, 40–57.Google Scholar
Böttcher, A and P, Dörfler (2010b), On the best constants in Markov-type inequalities involving Laguerre norms with different weights, Monatsh. Math. 161, 357–367.Google Scholar
Bownds, J.M and J, M.Cushing (1972), Some stability criteria for linear systems of Volterra integral equations, Funkcial. Ekvac. 13, 101–117.Google Scholar
Bownds, J.M and J, M.Cushing (1973), A representation formula for linear Volterra integral equations, Bull. Amer. Math. Soc. 79, 532–536.Google Scholar
Bownds, J.M and J, M.Cushing (1975a), Some stability theorems for systems of Volterra integral equations, Applicable Anal. 5, 65–77.Google Scholar
Bownds, J.M and J, M.Cushing (1975b), On preserving stability of Volterra integral equations under a general class of perturbations, Math. Systems Theory 9, 117–131.Google Scholar
Bownds, J.M, J, M.Cushing and R, Schutte (1976), Existence, uniqueness, and extendibility of solutions to Volterra integral systems with multiple variable delays, Funkcial. Ekvac. 19, 101–111.Google Scholar
Boyarintsev, Yu.E. and V, F.Chistyakov (1998), Algebro-Differential Systems (in Russian) (Novosibirsk, “Nauka”, Sibirskoe Predpriyatie RAN). [Review of research of Irkutsk group at Russian Academy of Sciences; in particular: reformulation of DAE systems as VIEs, and results on non-equivalence. See also MR 2002b:34005 for a description of the contents, and compare Bulatov (2002), Chistyakov (2006).]
Brakhage, H, K, Nickel and P, Rieder (1965), Auflösung der Abelschen Integralgleichung 2. Art, Z. Angew. Math. Phys. 16, 295–298.Google Scholar
Branca, H.W (1978), The nonlinear Volterra equation of Abel's kind and its numerical treatment, Computing 20, 307–321.Google Scholar
Brauer, F (1972), A nonlinear variation of constant formula to Volterra equations, Math. Systems Theory 6, 226–234. [Compare also Beesack (1987).]Google Scholar
Brauer, F (1975), On a nonlinear integral equation for population growth problems, SIAM J. Math. Anal. 6, 312–317.Google Scholar
Brauer, F (1976a), Constant rate harvesting of populations governed by Volterra integral equations, J. Math. Anal. Appl. 56, 18–27.Google Scholar
Brauer, F (1976b), Perturbations of the nonlinear renewal equation, Adv. in Math. 22, 32–51.Google Scholar
Brauer, F and C, Castillo-Chávez (2001), Mathematical Models in Population Biology and Epidemiology (New York, Springer-Verlag).
Brauer, F and P, van den Driessche (2003), Some directions for mathematical epidemiology, in Dynamical Systems and Their Applications in Biology (Cape Breton, 2001) (S., Ruan, G.S.K., Wolkowicz and J, Wu, eds.), pp. 95–112, Fields Institute Communications, Vol. 36 (Providence, RI, American Mathematical Society). [Contains an extensive bibliography.]
Brenner, M and Y, S.Xu (2002), A factorization method for identification of Volterra systems, J. Comput. Appl. Math. 144, 105–117.Google Scholar
Brezis, H (2011), Functional Analysis, Sobolev Spaces and Partial Differential Equations (New York: Springer).
Brezis, H and F, E.Browder (1975), Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 81, 73–78.Google Scholar
Brooks, C.D and P, K.Lamm (2011), A generalized approach to local regularization of linear Volterra problems in Lp spaces, Inverse Problems 27, 055010, 26pp.Google Scholar
Brunner, H (1983), Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer. Anal. 20, 1106–1119.Google Scholar
Brunner, H (1987), Collocation methods for one-dimensional Fredholm and Volterra integral equations, in The State of the Art in Numerical Analysis (Birmingham 1986) (A., Iserles and M.J., D.Powell, eds.), 563–600 (New York: Oxford University Press).
Brunner, H (1991), On implicitly linear and iterated collocation methods for Hammerstein integral equations, J. Integral Equations Appl. 3, 475–488.Google Scholar
Brunner, H (1997), 1896–1996: One hundred years of Volterra integral equations of the first kind, Appl. Numer. Math. 24, 83–93.Google Scholar
Brunner, H (2004), Collocation Methods for Volterra Integral and Related Functional Equations (Cambridge University Press).
Brunner, H (2004a), The numerical analysis of functional integral and integrodifferential equations of Volterra type, Acta Numer. 13, 55–145.Google Scholar
Brunner, H (2014), On Volterra integral operators with highly oscillatory kernels, Discrete Contin. Dyn. Syst. 34(2014), 903–914.Google Scholar
Brunner, H, P, J.Davies and D, B.Duncan (2012), Global convergence and local superconvergence of first-kind Volterra integral equation approximations, IMA J. Numer. Anal. 32, 1117–1146.Google Scholar
Brunner, H and P.J. van der, Houwen (1986), The Numerical Solution of Volterra Equations, CWI Monographs, Vol. 3 (Amsterdam: North-Holland).
Brunner, H, A, Iserles and S, P.Nørsett (2010), The spectral problem for a class of highly oscillatory Fredholm integral operators, IMA J. Numer. Anal. 30, 108–130.Google Scholar
Brunner, H, A, Iserles and S, P.Nørsett (2011), The computation of the spectra of highly oscillatory Fredholm integral operators, J. Integral Equations Appl. 23, 467–519.Google Scholar
Brunner, H and H, Liang (2010), Stability of collocation methods for delay differential equations with vanishing delays, BIT Numer. Math. 50, 693–711.Google Scholar
Brunner, H, Y, Y.Ma and Y, S.Xu (2015), The oscillation of solutions of Volterra integral and integro-differential equations with highly oscillatory kernels, J. Integral Equations Appl. 27, 455–487.Google Scholar
Brunner, H and S.Maset (2009), Time transformations for delay differential equations, Discrete Contin. Dyn. Syst. 25, 751–775.Google Scholar
Brunner, H and S, Maset (2010), Time transformations for state-dependent delay differential equations, Commun. Pure Appl. Anal. 9(2010), 23–45.Google Scholar
Brunner, H and C.H., Ou (2015), On the asymptotic stability of Volterra functional equations with vanishing delays, Commun. Pure Appl. Anal. 14, 397–406.Google Scholar
Brunner, H, A, Pedas and G, Vainikko (1999), The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comp. 68, 1079–1095. [Regularity results for VIEs with algebraic or logarithmic kernel singularities.]Google Scholar
Brunner, H and Z, W.Yang (2013), Blow-up behavior of Hammerstein-type Volterra integral equations, J. Integral Equations Appl. 24, 487–512. [See also Yang & Brunner (2013a) on analogous results for delay VIEs.]Google Scholar
Buckwar, E (1997), Iterative Approximation of the Positive Solution of a Class of Nonlinear Volterra-type Integral Equations, PhD Thesis (Berlin: Freie Universität / Logos Verlag).
Buckwar, E (2000), On a nonlinear Volterra integral equation, in: Corduneanu & Sandberg (2000, pp. 157–167), pp. 157–162.Google Scholar
Buckwar, E (2005), Existence and uniqueness of solutions of Abel integral equations with power-law non-linearities, Nonlinear Anal. 63, 88–96.Google Scholar
Bukhgeim, A.L (1983), Volterra Equations and Inverse Problems (in Russian) (Novosibirsk, “Nauka” Sibirsk. Otdel.). [Consult also the detailed review 86b:35193 in Math. Reviews.]
Bukhgeim, A.L (1999), Volterra Equations and Inverse Problems (Zeist, VSP). [Compare also Bukhgeim (1983) and Asanov (1998).]
Bulatov, M.V (2002), Regularization of degenerate systems of Volterra integral equations, Comput. Math. Math. Phys. 42, 315–320.Google Scholar
Bulatov, M.V and P, M.Lima (2011), Two-dimensional integral-algebraic systems: analysis and computational methods, J. Comput. Appl. Math. 236, 132–140.Google Scholar
Burns, J.A, T, L.Herdman and J, Turi (1990), Neutral functional integro-differential equations with weakly singular kernels, J. Math. Anal. Appl. 145, 371–401. [Contains an analysis of first-kind VFIEs with weakly singular kernels; see also Kappel & Zhang (1986).]Google Scholar
Burton, T.A (1983), Volterra Integral and Differential Equations (New York: Academic Press; 2nd edition, 2005: Amsterdam: Elsevier). [See also for numerous applications.]
Burton, T.A and D, P.Dwiggins (2011), Resolvents of integral equations with continuous kernels, Nonlinear Stud. 18, 293–305.Google Scholar
Burton, T.A and B, Zhang (2011), Periodic solutions of singular integral equations, Nonlinear Dyn. Syst. Theory 11, 113–123.Google Scholar
Busenberg, S and K, L.Cooke (1980), The effect of integral conditions in certain equations modelling epidemics and population growth, J. Math. Biol. 10, 13–32.Google Scholar
Bushell, P.J (1976), On a class of Volterra and Fredholm non-linear integral equations, Math. Proc. Cambridge Philos. Soc. 79, 329–335.Google Scholar
Bushell, P.J and W., Okrasínski (1989), Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel, Math. Proc. Cambridge Philos. Soc. 106, 547–552.Google Scholar
Bushell, P.J and W, Okrasínski (1990), Nonlinear Volterra integral equations with convolution kernel, J. London Math. Soc. (2) 41, 503–510.Google Scholar
Bushell, P.J and W, Okrasínski (1992), Nonlinear Volterra integral equations and the Apéry identities, Bull. London Math. Soc. 24, 478–484.Google Scholar
Bushell, P.J and W, Okrasínski (1996), On the maximal interval of existence for solutions to some nonlinear Volterra integral equations with convolution kernel, Bull. London Math. Soc. 28, 59–65.Google Scholar
Butzer, P.L (1958), Die Anwendung des Operatorenkalküls von Jan Mikusínski auf lineare Integralgleichungen vom Faltungstyp, Arch. Ration. Mech. Anal. 2, 114–128. [See p. 125 on quadratic VIEs.]Google Scholar
Cahlon, B (1992), Numerical solution for functional equations with state-dependent delay, Appl. Numer. Math. 9, 291–305.Google Scholar
Cahlon, B (1993), Oscillatory solutions of Volterra integral equations with statedependent delay, Dynam. Systems Appl. 2, 461–469.Google Scholar
Cahlon, B and D, Schmidt (1997), Stability criteria for certain delay integral equations of Volterra type, J. Comput. Appl. Math. 84, 161–188.Google Scholar
Calabrò, F and G, Capobianco (2009), Blowing up behavior for a class of nonlinear Volterra integral equations connected with parabolic PDEs, J. Comput. Appl. Math. 228, 580–588.Google Scholar
Campbell, S.L and C.W., Gear (1995), The index of general nonlinear DAEs, Numer. Math. 72, 173–196.Google Scholar
Cañada, A and A, Zertiti (1994), Methods of upper and lower solutions for nonlinear delay integral equations modelling epidemics and population growth, Math. Models Methods Appl. Sci. 4, 107–119. [Existence of positive periodic solutions. See also Cooke & Kaplan (1976).]Google Scholar
Cannon, J.R (1984), The One-Dimensional Heat Equation (Reading, MA: Addison- Wesley Publishing Company).
Cao, Y, T, Herdman and Y, Xu (2003), A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal. 41, 364–381.Google Scholar
Cao, Y.Z and R, Zhang (2015), A stochastic co.llocation method for stochastic Volterra equations of the second kind, J. Integral Equations Appl. 27, 1–25.Google Scholar
Carleman, T (1922), Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen, Math. Z. 15, 111–120.Google Scholar
Carlson, D.A (1987), An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl. 54, 43–61.Google Scholar
Carlson, D.A (1990), Infinite-horizon optimal controls for problems governed by a Volterra integral equation with state-and-control-dependent discount factor, J. Optim. Theor. Appl. 66, 311–336.Google Scholar
Carpinteri, A and F, Mainardi (1997), Fractals and Fractional Calculus in Continuum Mechanics, Lecture Notes, International Centre for Mechanical Sciences, Udine 1996 (Wien-New York: Springer-Verlag). [See in particular the contribution by Gorenflo (1996).]
Castillo, J.M.F and W., Okrasínski (1993), Boyd index and nonlinear Volterra equations, Nonlinear Anal. 20, 721–732.Google Scholar
Castillo, J.M.F and W, Okrasínski (1994), A new proof of existence of solutions for a class of nonlinear Volterra equations, J. Integral Equations Appl. 6, 191–196. [Compare Gripenber (1990) for the original result.]Google Scholar
Cerha, J (1972), A note on Volterra integral equations with degenerate kernel, Comment. Math. Univ. Carolinae 13, 659–672.Google Scholar
Cerha, J (1976), On some linear Volterra delay equations, Časopis Pěst. Mat. 101, 111–123. [L p-solutions and resolvent equations.]Google Scholar
Chadam, J.M and H.-M., Yin (1993), A diffusion equation with localized chemical reactions, Prof. Edinburgh Math. Soc. 37, 101–118.Google Scholar
Chakrabarti, A (2008), Solution of the generalized Abel integral equations, J. Integral Equations Appl. 20, 1–11. [See von Wolfersdorf (1965) for a more comprehensive analysis of such equations.]Google Scholar
Chambers, Ll.G. (1990), Some properties of the functional equation ϕ(x) = f (x) + ƛx 0 g(x, y, ϕ(y))dy , Internat. J. Math. Math. Sci. 14, 27–44. [Representation of solutions: analogue of “Neumann series” for 0 < ƛ < 1; application to scalar and multidimensional pantograph equations.]Google Scholar
Chandler, G.A and I, G.Graham (1988), Product integration-collocation methods for noncompact integral operator equations, Math. Comp. 50, 125–138.Google Scholar
Chang, C.C and T, S.Lundgren (1959/1960), Airfoil in a sonic shear flow jet: a mixed boundary value problem for the generalized Tricomi equation, Quart. Appl. Math. 17, 375–392. [See also von Wolfersdorf (1965), Gakhov (1966).]Google Scholar
Chen, G and R, Grimmer (1980), Semigroups and integral equations, J. Integral Equations Appl. 2, 133–154.Google Scholar
Chen, G and R, Grimmer (1982), Integral equations as evolution equations, J. Differential Equations 45, 53–74.Google Scholar
Cherrier, P and A, Milani (2012), Linear and Quasi-linear Evolution Equations in Hilbert Spaces (Providence, RI: American Mathematical Society). [Ch. 1: introduction to Hölder, Lebesgue and Sobolev spaces.]
Chistyakov, V.F (2006), On some properties of systems of Volterra integral equations of the fourth kind with a convolution-type kernel, Math. Notes 80, 109–113.Google Scholar
Ciarlet, P.G (2013), Linear and Nonlinear Functional Analysis with Applications (Philadelphia, Society for Industrial and Applied Mathematics (SIAM)). Clément, Ph. (1980), On abstract Volterra equations with kernels having a positive resolvent, Israel J. Math. 36, 193–200.Google Scholar
Clément, Ph. and J, A.Nohel (1979), Abstract linear and nonlinear Volterra equations preserving positivity, SIAM J. Math. Anal. 10, 365–388.Google Scholar
Clément, Ph. and J, A.Nohel (1981), Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels, SIAM J. Math. Anal. 12, 514–535.Google Scholar
Cochran, J.A (1972), Analysis of Linear Integral Equations (New York:McGraw-Hill).
Coen, S (2008), The life of Vito Volterra as depicted in some relatively recent biographies, Mat. Soc. Cult. Riv. Unione Mat. Ital. (I) 1, 443–476, 590.Google Scholar
Cochran, W.G, J.-S., Lee and J, Potthoff (1995), Stochastic Volterra equations with singular kernels, Stochastic Process. Appl. 56, 337–349.Google Scholar
Condon, M, A, Deaño, A., Iserles and K, Kropielnicka (2012), Efficient computation of delay differential equations with highly oscillatory terms, Math. Model. Numer. Anal. 46, 1407–1420.Google Scholar
Consiglio, A (1940), Risoluzione di una equazione integrale non lineare presentatasi in un problema di turbolenza, Atti Accad. Gioenia Catania (6) 4, no. XX, 13 p.Google Scholar
Cooke, K.L (1976), An epidemic equation with immigration, Math. Biosci. 29, 135–158. [A generalisation of this mathematical model to one with state-dependent delay may be found in Bélair (1991).]Google Scholar
Cooke, K.L and J, L.Kaplan (1976), A periodicity threshold theorem for epidemics and population growth, Math. Biosci. 31, 87–104. [Compare also Cañada & Zertiti (1994).]Google Scholar
Cooke, K.L and J, A.Yorke (1973), Some equations modelling growth processes and gonorrhea epidemics, Math. Biosci. 16, 75–101.Google Scholar
Coppel, W.A (1965), Stability and Asymptotic Behavior of Differential Equations (Boston: D.C.Heath & Co.).
Corduneanu, C (1963), Sur une équation intégrale de la théorie du rélage automatique, C.R. Acad. Sci. Paris 256, 3564–3567.Google Scholar
Corduneanu, C (1965), Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Mat. Pura Appl. (4) 67, 349–363.Google Scholar
Corduneanu, C (1991), Integral Equations and Applications (Cambridge, Cambridge University Press). [See also for an illuminating introduction to the theory of abstract Volterra equations and extensive references.]
Corduneanu, C (2000), Abstract Volterra equations: a survey, Math. Comput. Modelling 32, 1503–1528.Google Scholar
Corduneanu, C and I, W.Sandberg (eds.) (2000), Volterra Equations and Applications, Stability Control, Theory, Methods Appl. 10 (Amsterdam, Gordon and Breach). [Proceedings of the Volterra Centennial Symposium held at the University of Texas at Arlington, May 1996.]
Cotton, É. (1910), Équations différentielles et équations intégrales, Bull. Soc. Math. France 38, 144–154.Google Scholar
Curle, S.N (1978), Solution of an integral equation of Lighthill, Proc. Roy. Soc. London Ser. A 364, 435–441. [Lighthill's original paper of 1950.]Google Scholar
Dai, Z.W and P, K.Lamm (2008), Local regularization for the nonlinear inverse autoconvolution problem, SIAM J. Numer. Anal. 46, 832–868. [Contains an extensive list of references on first-kind auto-convolution VIEs.]Google Scholar
Davies, E.B (2007), Linear Operators and their Spectra (Cambridge University Press).
Davies, P.J and D, B.Duncan (2004), Stability and convergence of collocation schemes for retarded potential integral equations, SIAM J. Numer. Anal. 42, 1167–1188.Google Scholar
Davis, H.T (1924), Fractional operations as applied to a class of Volterra integral equations, Amer. J. Math. 46, 95–109. [See also Evans (1910).]Google Scholar
Davis, H.T (1926), The Present State of Integral Equations, Indiana University Studies XIII, No. 70 (Bloomington). [Contains an extensive bibliography (25 pages) on the development of the theory of VIEs.]
Davis, H.T (1927), A Survey of Methods for the Inversion of Integrals of Volterra Type, Indiana University Studies XIV, Nos. 76–77 (Bloomington). [Discussion of Volterra's Nota III and the connection with Fuchsian differential equations: pp. 10–23.]
Davis, H.T (1930), The Theory of Volterra Integral Equations of the Second Kind, Indiana University Studies XVII, Nos. 88–90 (Bloomington).
Deaño, A., D, Huybrechs and A, Iserles (2017), Computing Highly Oscillatory Integrals (Philadelphia: Society of Industrial and Applied Mathematics).
Deimling, K (1979), Fixed points of condensing maps, in Londen & Staffans (1979), pp. 67–82.
Deimling, K (1995), Nonlinear Volterra integral equations of the first kind, Nonlinear Anal. 25, 951–957. [Extension of Volterra's “smoothing transformation” in his Nota II to nonlinear first-kind VIEs with weakly singular kernels. Compare also Dixon et al. (1986) for a similar existence and uniqueness result.]Google Scholar
Deng, K and H, A.Levine (2000), The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243, 85–126.Google Scholar
Deng, K and C, A.Roberts (1997), Quenching for a diffusion equation with concentrated singularity, Differential Integral Equations 10, 369–379.Google Scholar
Deng, K and M, X.Xu (1999), Quenching for a diffusive equation with a concentrated singularity, Z. Angew. Math. Phys. 50, 574–584.Google Scholar
Denisov, A.M and S, V.Korovin (1992), On Volterra's integral equation of the first kind, Moscow Univ. Comput. Math. Cybernet. 3, 19–24. [Generalisation of Volterra's 1897 paper. See also Lalesco (1911) and Denisov & Korovin (1995).]Google Scholar
Denisov, A.M and A, Lorenzi (1995), On a special Volterra integral equation of the first kind, Boll. Un. Mat. Ital. B (7) 9, 443–457.Google Scholar
Denisov, A.M and A, Lorenzi (1997), Existence results and regularization techniques for severely ill-posed integrofunctional equations, Boll. Un. Mat. Ital. B (7) 11, 713–732.Google Scholar
Desch, G and S.-O., Londen (2013), Maximal regularity for stochastic integral equations, J. Appl. Anal. 19, 125–140.Google Scholar
Desch, W and S.-O., Londen (2011), An L p-theory for stochastic integral equations, J. Evol. Equ. 11, 287–317.Google Scholar
Desch, W and J, Prüss (1993), Counterexamples for abstract linear Volterra equations, J. Integral Equations Appl. 5, 29–45.Google Scholar
Diekmann, O (1978), Thresholds and travelling waves for the geographical spread of infection, J. Math. Bio. 6, 109–130. [See also Thieme & Zhao (1993) for models based on nonlinear VFIEs.]Google Scholar
Diekmann, O (1979), Integral equations and population dynamics, in Colloquium Numerical Treatment of Integral Equations (H.J.J., te Riele, ed.), pp. 115–149, MC Syllabus 41 (Amsterdam: Mathematisch Centrum). [This expository paper is a rich source on applications of VIEs and VIDEs; extensive list of references.]
Diekmann, O and S.A., van Gils (1981), A variation-of-constants formula for nonlinear Volterra integral equations of convolution type, in Nonlinear Differential Equations: Invariance, Stability, and Bifurcation (Trento, 1980) (P. de, Mottoni and L, Salvadori, eds.), pp. 133–143 (New York: Academic Press).
Diekmann, O and S.A., van Gils (1984), Invariant manifolds for Volterra integral equations of convolution type, J. Differential Equations 54, 139–180.Google Scholar
Diethelm, K (2010), The Analysis of Fractional Differential Equations: An applicationoriented exposition using differential operators of Caputo type, Lecture Notes in Math. 2004 (Heidelberg-New York: Springer-Verlag).
Diethelm, K and N, J.Ford (2012), Volterra integral equations and fractional calculus: do neighboring solutions intersect?, J. Integral Equations Appl. 24, 25–37.Google Scholar
Dieudonné, J. (1960), Foundations of Modern Analysis (New York: Academic Press).
Dieudonné, J. (1981), History of Functional Analysis (Amsterdam: North-Holland).
Dinghas, A (1958), Zur Existenz von Fixpunkten bei Abbildungen vom Abel- Liouvilleschen Typus, Math. Z. 70, 174–189.Google Scholar
Diogo, T and P, Lima (2008), Superconvergence of collocation methods for a class of weakly singular Volterra equations, J. Comput. Appl. Math. 218, 307–316.Google Scholar
Diogo, T, S, McKee and T, Tang (1991), A Hermite-type collocation method for the solution of an integral equation with a certain weakly singular kernel, IMA J. Numer. Anal. 11, 595–605.Google Scholar
Diogo, T and G, Vainikko (2013), Applicability of spline collocation to cordial Volterra equations, Math. Model. Anal. 18, 1–21.Google Scholar
Dixon, J and S, McKee (1984), Repeated integral inequalities, IMA J. Numer. Anal. 4, 99–107.Google Scholar
Dixon, J, S., Mckee and R, Jeltsch (1986), Convergence analysis of discretization methods for nonlinear first kind Volterra integral equations, Numer. Math. 49, 67–80. [Contains result on global existence of solutions for nonlinear VIEs of the first kind.]Google Scholar
Doetsch, G (1973), Handbuch der Laplace-Transformation. III: Anwendungen der Laplace-Transform (Basel-Stuttgart: Birkhäuser Verlag). [Corrected reprint of 1956 edition.]
Dolph, C.L and G.J., Minty (1964), On nonlinear integral equations of the Hammerstein type, in Anselone (1964, pp. 99–154. [Extensive bibliography, including historical papers.]
Domanov, I (2007), On the spectrum and eigenfunctions of the operator (V f)(x) = xα 0 f (t)dt , in Perspectives in Operator Theory (Warsaw 2004) (W., Arendt et al., eds.), 137–142, Banach Center Publ. 75 (Warsaw: Polish Academy of Sciences, Institute of Mathematics).
Domanov, I (2008), On the spectrum of the operator which is a composition of integration and substitution, Studia Math. 185, 49–65.Google Scholar
Domínguez, V., I, G.Graham and T, Kim (2013), Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points, SIAM J. Numer. Anal. 51, 1542–1566.Google Scholar
Douglas, R.G (1998), Banach Algebra Techniques in Operator Theory (New York: Springer-Verlag).
Driver, R.D (1963), Existence theory for a delay-differential system, Contributions to Differential Equations 1, 317–336.Google Scholar
Dutkiewicz, A (2006), On the existence of L p-solutions of Volterra integral equations with weakly singular kernels, Demonstratio Math. 39, 837–844.Google Scholar
Eggermont, P.P.B (1988), On monotone Abel-Volterra integral equations on the half line, Numer. Math. 52, 65–79.Google Scholar
El'sgol'ts, L.E. and S, B.Norkin (1973), Introduction to the Theory and Application of Differential Equations with Deviating Arguments (New York–London: Academic Press).
Emmrich, E and G, Vallet (2016), On a nonlinear abstract Volterra equation, J. Integral Equations Appl. 28, 75–89.Google Scholar
Engel, K-J. and R, Nagel (2000), One-Parameter Semigroups for Linear Evolution Equations (New York: Springer-Verlag). [See pp. 435–452 on semigroups for Volterra integral equations. Compare also Corduneanu (1991), Prüss (2012) and, especially, Gripenber, Londen & Staffans (1990) Ch. 8, as well the concise “short course” contained in the following book.]
Engel, K-J. and R, Nagel (2006), A Short Course on Operator Semigroups (Unitext: New York: Springer-Verlag).
Engquist, B, A, Fokas, E., Hairer and A, Iserles (eds.) (2009), Highly Oscillatory Problems, London Math. Soc. Lecture Note Ser. 366 (Cambridge University Press).
Erdélyi, A. (1955), Higher Transcendental Functions, Vol. III (New York, McGraw- Hill). [Discusses the Mittag-Leffler function on pp. 206–211; see also Hille & Tamarkin (1930), Gorenflo (1987), Gorenflo & Vessella (1991), Kiryakova (2000).]
Evans, G.C (1909), The integral equation of the second kind, of Volterra, with singular kernel, Bull. Amer. Math. Soc. 16, 130–136.Google Scholar
Evans, G.C (1910), Volterra's integral equation of the second kind, with discontinuous kernel, Trans. American Math. Soc. 11, 393–413. [Based on Evans's 1910 Harvard University PhD thesis. Evans's papers represent the first contributions to the theory of singular VIEs of the second kind. See also a sequel in the same journal, 12 (1911), 429–472.]Google Scholar
Eveson, S.P (2003), Norms of iterates of Volterra operators on L2, J. Operator Theory 50, 369–386.Google Scholar
Eveson, S.P (2005), Asymptotic behaviour of iterates of Volterra operators on L p(0, 1), Integral Equations Operator Theory 53, 331–341. [See also Shkarin (2006a), Addell & Gallardo-Gutièrrez (2007).]Google Scholar
Faber, V, T.A., Manteuffel, A, B.WhiteJr. and G.M., Wing (1986), Asymptotic behavior of singular values and singular functions of certain convolution operators, Comput. Math Appl. Ser. A 12, 733–747.Google Scholar
Faber, V and G, M.Wing (1986a), Asymptotic behavior of singular values of convolution operators, Rocky Mount. J. Math. 16, 567–574.Google Scholar
Faber, V and G, M.Wing (1986b), Singular values of fractional integral operators: a unification of theorems of Hille, Tamarkin and Chang, J. Math. Anal. Appl. 120, 745–760.Google Scholar
Faber, V and G, M.Wing (1988), Effective bounds for the singular values of integral operators, J. Integral Equations Applications 1, 55–64.Google Scholar
Feldstein, A and K, W.Neves (1984), High order methods for state-dependent delay differential equations, SIAM J. Numer. Anal. 21, 844–863.Google Scholar
Feldstein, A, K, W.Neves and S, Thompson (2006), Sharpness results for statedependent delay differential equations, Commun. Pure Appl. Anal. 25, 472–487.Google Scholar
Feller, W (1941), On the integral equation of renewal theory, Ann. Math. Statist. 12, 243–267. [Compare also Lotka (1939) for an extensive list of earlier references.]Google Scholar
Feller, W (1971), An Introduction to Probability Theory and Its Applications, Vol. II (New York: John Wiley & Sons).
Fényes, T (1967), A note on the solution of integral equations of convolution type of the third kind by application of the operational calculus of Mikusínski, Studia Sci. Math. Hungar. 2, 81–89.Google Scholar
Fényes, T (1977), On the operational solution of a convolution type integral equation of the third kind, Studia Sci. Math. Hungar. 12, 65–75.Google Scholar
Fenyö, S and H, W.Stolle (1982), Theory und Praxis der linearen Integralgleichungen (Berlin, VEB Deutscher Verlag derWissenschaften; Basel-Boston: Birkhäuser Verlag). [Band 1 (1982): Theory of linear operators; Band 2 (1983): Theory of linear second-kind integral equations; Band 3 (1984): Linear first-kind equations and integral equations of special type; Band 4 (1984): Numerical methods and applications; this volume also contains a very extensive bibliography of some 2000 items.]
Fixman, U (2000), On the numerical range of a Volterra operator in Lp , Integral Equations Operator Theory 37, 9–19.Google Scholar
Fleischer, G, R, Gorenflo and B, Hofmann (1999), On the autoconvolution equation and total variation constraints, Z. Angew. Math. Mech. 79, 149–159.Google Scholar
Fleischer, G and B, Hofmann (1996), On inversion rates for the autoconvolution equation, Inverse Problems 12, 419–435.Google Scholar
Fleischer, G and B, Hofmann (1997), The local degree of ill-posedness and the autoconvolution equation, Nonlinear Anal. 30, 3323–3332.Google Scholar
Fredholm, I (1903), Sur une classe d'équations fonctionnelles, Acta Math. 27, 365–390.Google Scholar
Friedman, A (1963), On integral equations of Volterra type, J. Analyse Math. 11, 381–413. [Positivity and asymptotic properties of solutions to linear and nonlinear convolution equations, including equations with weakly singular kernels. See also Ling (1978).]Google Scholar
Friedman, A (1965), Periodic behavior of solutions of Volterra integral equations, J. Analyse Math. 15, 287–303.Google Scholar
Friedman, A and M, Shinbrot (1967), Volterra integral equations in Banach spaces, Trans. Amer. Math. Soc. 126, 131–179.Google Scholar
Gabbasov, N.S (2011), New versions of the collocation method for integral equations of the third kind with singularities in the kernel, Differ. Equ. 47, 1357–1364.Google Scholar
Gabbasov, N.S and R, R.Zamaliev (2010), New versions of spline methods for integral equations of the third kind with singularities in the kernel, Differ. Equ. 46, 1330–1338.Google Scholar
Gakhov, F.D (1966), Boundary Value Problems (Oxford: Pergamon Press). [1990 reprint: New York: Dover Publications.]
Galajikian, H (1913), On certain non-linear integral equations, Bull. Amer. Math. Soc. 19, 342–346. [Part of the author's master's thesis, Cornell University, 1912.]Google Scholar
Galajikian, H (1914), Non-linear integral equations of Volterra type, Ann. of Math. (2) 16, 172–192.Google Scholar
Gallardo-Gutiérrez, E.A. and A., Montes-Rodríguez (2004), The Volterra operator is not supercyclic, Integral Equations Operator Theory 50, 211–216.Google Scholar
Gauthier, A, P, A.Knight and S, McKee (2007), The Hertz contact problem, coupled Volterra integral equations and a linear complementarity problem, J. Comput. Appl. Math. 206, 322–340.Google Scholar
Gear, C.W (1990), Differential algebraic equations, indices, and integral algebraic equations, SIAM J. Numer. Anal. 27, 1527–1534. [Compare also Campbell & Gear (1995).]Google Scholar
Ghermanesco, M (1959), Équations intégrales aux deux limites variables, C.R.Acad. Sci. Paris 248, 1104–1105; 249, 1606–1607. [Limits of integration in Volterra operator are -t and t.]Google Scholar
Ghermanesco, M (1961), Équations intégrales aux deux limites variables, Ann. Mat. Pura Appl. (4) 54, 33–56.Google Scholar
Ghoreishi, F, M, Hadizadeh & S., Pishbin (2012), On the convergence analysis of the spline collocation method for system of integral-algebraic equations of index-2, Int. J. Comput. Methods 9, 1250048, 22pp.Google Scholar
Gilbarg, D and N.S, Trudinger (2001), Elliptic Partial Differential Equations of Second Order (Reprint of the 1988 edition) (Berlin-Heidelberg: Springer).
Gohberg, I and S, Goldberg (1980), Basic Operator Theory (Basel-Boston: Birkhäuser Verlag).
Gohberg, I.C and M, G.Kreǐn (1970), Theory and Applications of Volterra Operators in Hilbert Space, Translations of Mathematical Monographs 24 (Providence, RI, American Mathematical Society).
Gołaszewska, A and J, Turo (2010), On nonlinear Volterra integral equations with state-dependent delays in several variables, Z. Anal. Anwendungen 29, 91–106.Google Scholar
Gollwitzer, H.E and R, A.Hager (1970), The nonexistence of maximum solutions of Volterra integral equations, Proc. Amer. Math. Soc. 26, 301–304. [See also Nohel's review in Math. Review of this paper, and its relation to Nohel (1962).]Google Scholar
Goncerzewicz, J, H, Marcinkowska, W., Okrasinski and K, Tabisz (1978), On the percolation of water from a cylindrical reservoir into surrounding soil, Zastos. Mat. 16, 249–261.Google Scholar
Goodstein, J.R (2007), The Volterra Chronicles. The Life and Times of an Extraordinary Mathematician 1860–1940 (Providence, RI, American Mathematical Society).
Gorenflo, R (1987), Newtonssche Aufheizung, Abelsche Integralgleichungen zweiter Art und Mittag-Leffler-Funktionen, Z. Naturforsch. 42, 1141–1146.Google Scholar
Gorenflo, R (1996), Abel Integral Equations with Special Emphasis on Applications, Lecture Notes in Math. Sciences, Graduate School of Math. Sciences 13, University of Tokyo.
Gorenflo, R and B, Hofmann (1994), On autoconvolution and regularization, Inverse Problems 10, 353–373.Google Scholar
Gorenflo, R and A, A.Kilbas (1995), Asymptotic solution of a nonlinear Abel-Volterra integral equation of second kind, J. Fract. Calculus 8, 103–117.Google Scholar
Gorenflo, R, A, A.Kilbas and S, V.Rogosin (1998), On the generalized Mittag-Leffler type functions, Integral Transform. Spec. Funct 7, 215–224.Google Scholar
Gorenflo, R, A, A.Kilbas and S, B.Yakubovich (1994), On Abel type integral equations of the first kind, J. Fract. Calc. 5, 59–68.Google Scholar
Gorenflo, R and F, Mainardi (1997), Fractional calculus: integral and differential equations of fractional order, in Carpinteri & Mainardi (1997), pp. 223–276. [The article contains also a section on the Mittag-Leffler function.]Google Scholar
Gorenflo, R and A, Pfeiffer (1991), On analysis and discretization of nonlinear Abel integral equations of the first kind, Acta Math. Vietnam. 16, 211–262.Google Scholar
Gorenflo, R and S, Vessella (1991), Abel Integral Equations: Analysis and Applications, Lectures Notes in Math. 1461 (Berlin-Heidelberg: Springer-Verlag).
Gourley, S, R, S.Liu and Y, J.Lou (2016), Intra-specific competition and insect larval development: a model with time-dependent delay, Proc. Roy. Soc. Edinburgh Sect. A, to appear.
Goursat, É. (1903), Sur un problème d'inversion résolu par Abel, Acta Math. 27, 129–133.Google Scholar
Graham, I.G (1982), Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations 4, 1–30.Google Scholar
Graham, I.G and I, H.Sloan (1979), On the compactness of certain integral operators, J. Math. Anal. Appl. 68, 580–594.Google Scholar
Grandits, P (2008), A regularity theorem for a Volterra integral equation of the third kind, J. Integral Equations Appl. 20, 507–526.Google Scholar
Griepentrog, E and R, März (1986), Differential-Algebraic Equations and Their Numerical Treatment, Teubner Texts in Mathematics 88 (Leipzig: B.G.Teubner Verlagsgesellschaft).
Grimmer, R.C (1982), Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273, 333–349.Google Scholar
Grimmer, R.C and R, K.Miller (1977), Existence, uniqueness, and continuity for integral equations in a Banach space, J. Math. Anal. Appl. 57, 429–447.Google Scholar
Grimmer, R.C and A, J.Pritchard (1983), Analytic resolvent operators for integral equations in Banach space, J. Differential Equations 50, 234–259.Google Scholar
Grimmer, R.C and J, Prüss (1985), On linear Volterra equations in Banach spaces, Comput. Math. Appl. 11, 189–205. [Resolvent operators, well-posedness, Hille- Yosida type theorem.]Google Scholar
Gripenberg, G (1978), On positive, nonincreasing resolvents of Volterra equations, J. Differential Equation 30, 380–390.Google Scholar
Gripenberg, G (1979), An abstract nonlinear Volterra equation, Israel J. Math. 34, 198–212.Google Scholar
Gripenberg, G (1979a), On rapidly decaying resolvents of Volterra equations, J. Integral Equations 1, 241–249.Google Scholar
Gripenberg, G (1979b), On the boundedness of solutions of Volterra equations, Indiana Univ. Math. J. 28, 279–290.Google Scholar
Gripenberg, G (1980a), On the resolvents of nonconvolution Volterra kernels, Funkcial. Ekvac. 23, 83–95.Google Scholar
Gripenberg, G (1980b), On Volterra equations of the first kind, Integral Equations Operator Theory 4, 473–488. [Existence of resolvents for first-kind VIEs.]Google Scholar
Gripenberg, G (1981a), Unique solutions of some Volterra integral equations, Math. Scand. 48, 59–67.Google Scholar
Gripenberg, G (1981b), On some epidemic models, Quart. Appl. Math. 39, 317–327.Google Scholar
Gripenberg, G (1982), Volterra integral operators and logarithmic convexity, Math. Scand. 50, 209–220.Google Scholar
Gripenberg, G (1982a), Decay estimates for resolvents of Volterra equations, J. Math. Anal. Appl. 85, 473–487.Google Scholar
Gripenberg, G (1982b), Asymptotic estimates for resolvents of Volterra equations, J. Differential Equations 46, 230–243.Google Scholar
Gripenberg, G (1983a), An estimate for the solution of a Volterra equation describing an epidemic, Nonlinear Anal. 7, 161–165.Google Scholar
Gripenberg, G (1983b), The construction of the solution of an optimal control problem described by Volterra integral equations, SIAM J. Control Optim. 21, 582–597.Google Scholar
Gripenberg, G (1987), Asymptotic behaviour of resolvents of abstract Volterra equations, J. Math. Anal. Appl. 122, 427–438.Google Scholar
Gripenberg, G (1989), Optimal control and integral equations, in Differential Equations (Xanthi, 1987) (C, M.Dafermos, G., Ladas and G, Papanicolaou, eds.), pp. 283–290, Lecture Notes in Pure and Appl. Math. 118 (New York: Marcel Dekker).
Gripenberg, G (1990), On the uniqueness of solutions of Volterra equations, J. Integral Equations Appl. 2, 421–430. [x(t) = t 0 k(t -s)g(x(s))ds with g(0) = 0: see also Castillo & Okrasínski (1994) for another proof, and Bushell & Okrasínski (1996) with its references.]Google Scholar
Gripenberg, G, S.-O., Londen and O, Staffans (1990), Volterra Integral and Functional Equations (Cambridge University Press).
Gronwall, T.H (1919), Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. of Math. (2) 20, 292–296.
Grossman, S.I (1974), Integrability of resolvents of certain Volterra integral equations, J. Math. Anal. Appl. 48, 785–793.Google Scholar
Grossman, S.I (1979), Some notes on the resolvents of Volterra integral equations, in Volterra Equations (Otaniemi, 1978) (S.-O., Londen and O, J.Staffans, eds.), 88–91, Lecture Notes in Math. 737 (Berlin-Heidelberg: Springer-Verlag).
Guan, Q.G, R, Zhang and Y, K.Zou (2012), Analysis of collocation solutions for nonstandard Volterra integral equations, IMA J. Numer. Anal. 32, 1755–1785.Google Scholar
Guerraggio, A (2006), The “modern” Vito Volterra (in Italian), in Matematica, Cultura e Società 2005 (I., Gabbani, ed.), 87–108, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Ser. 2 (Pisa: Edizioni della Normale).
Guerraggio, A and G, Paoloni (2012), Vito Volterra (translation of the 2008 original) (Heidelberg: Springer).
Guglielmi, N and E, Hairer (2008), Computing the breaking points in implicit delay differential equations, Adv. Comput. Math. 29, 229–247.Google Scholar
Gyllenberg, M (1981), A note on continuous dependence of solutions of Volterra integral equations, Proc. Amer. Math. Soc. 81, 546–548.Google Scholar
Györi, I and F, Hartung (2010), Asymptotically exponential solutions in nonlinear integral and differential equations, J. Differential Equations 249, 1322–1352.Google Scholar
Hadizadeh, M. F., Ghoreishi and S, Pishbin (2011), Jacobi spectral solution for integralalgebraic equations of index-2, Appl. Numer. Math. 61, 131–148.Google Scholar
Hagen, R, S, Roch and B, Silbermann (2001), C*-Algebras and Numerical Analysis (New York: Marcel Dekker).
Hairer, E and Ch., Lubich (1984), On the stability of Volterra-Runge-Kutta methods, SIAM J. Numer. Anal. 21, 123–135.Google Scholar
Hairer, E and G, Wanner (2010), Solving Ordinary Differential Equations II (Second revised edition) (Berlin: Springer-Verlag).
Halanay, A and J, A.Yorke (1971), Some new results and problems in the theory of functional-differential equations, SIAM Review 13, 55–80.Google Scholar
Hale, J.K and S.M. Verduyn, Lunel (1993), Introduction to Functional Differential Equations (New York: Springer-Verlag).
Halmos, P.R (1982), A Hilbert Space Problem Book (Second edition) (New York: Springer-Verlag).
Hammerstein, A (1930), Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. (Ivar Fredholm in memoriam) 54, 117–176.Google Scholar
Han, W. (1994), Existence, uniqueness and smoothness results for second-kind Volterra equations with weakly singular kernels, J. Integral Equations Appl. 6, 365–384.Google Scholar
Handelsman, R.A and W.E., Olmstead (1972), Asymptotic solution to a class of nonlinear Volterra integral equations, SIAM J. Appl. Math. 22, 373–384.Google Scholar
Hansen, P.C (1998), Rank-Deficient and Discrete Ill-Posed Problems (Philadelphia, SIAM).
Hardy, G.H and J, E.Littlewood (1928), Some properties of fractional integrals, Math. Z. 27, 565–606.Google Scholar
Hartung, F, T, Krisztin, H.-O., Walther and J.H., Wu (2006), Functional differential equations with state-dependent delays: theory and applications, in Handbook of Differential Equations, Vol. III (A., Cañada, P., Drábek and A, Fonda, eds.), pp. 435–545 (Amsterdam: Elsevier/North Holland). [Contains extensive list of references.]
Haubold, H.J, A.M., Mathai and R, K.Saxena (2011), Mittag-Leffler functions and their applications, J. Appl. Math. 2011, Art. ID 298628, 51 pp.Google Scholar
Hellinger, E and O, Toeplitz (1927), Integralgleichungen und Gleichungen mit unendlichvielen Unbekannten, Encyklopädie der Wissenschaften 11.3, 1335–1661 (1953 reprint: New York: Chelsea Publ. Co.). [Still the best source of information on the early history and development of the theory of integral equations.]
Henrici, P (1977), Applied and Computational Complex Analysis, Vol. II (New York: Wiley-Interscience).
Herdman, T.L (1976), Existence and continuation properties of solutions of a nonlinear Volterra integral equation, in Dynamical Systems, Vol. II (L., Cesari, J, H.Hale and J, P.LaSalle, eds.), pp. 307–310 (New York: Academic Press).
Herdman, T.L (1977), Behavior of maximally defined solutions of a nonlinear Volterra equation, Proc. Amer. Math. Soc. 67, 297–302.Google Scholar
Hethcote, H.W and P. van den, Driessche (1995), An SIS epidemic model with variable population size and a delay, J. Math. Biol. 34, 177–194.Google Scholar
Hethcote, H.W and P. van den, Driessche (2000), Two SIS epidemiologic models with delays, J. Math. Biol. 40, 3–26.Google Scholar
Hethcote, H.W, M, A.Lewis and P. van den, Driessche (1989), An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol. 27, 49–64.Google Scholar
Hethcote, H.W and D, W.Tudor (1980), Integral equation models for endemic infectious diseases, J. Math. Biol. 9, 37–47.Google Scholar
Hilbert, D (1912), Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Lepizig: B. G. Teubner; 1953 reprint: New York: Chelsea Publ. Co.). [Contains his six “Mitteilungen” of 1904–1910 on the theory of Fredholm integral equations; compare also the next reference, and see Stewart (2011) for an English translation of the 1904 paper.]
Hilbert, D and E, Schmidt (1989), Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten (A., Pietsch, ed.) (Leipzig: Teubner).
Hille, E. and R.S., Phillips (1957), Functional Analysis and Semigroups, American Mathematical Society Colloquium Publication, Vol. 31 (Providence, RI: American Mathematical Society).
Hille, E. and J.D., Tamarkin (1930), On the theory of linear integral equations, Ann. Math. 31, 479–528. [First use of Mittag-Leffler function for representation of solution of weakly singular VIE.]Google Scholar
Hofmann, B. (1994), On the degree of ill-posedness for nonlinear problems, J. Inverse Ill-Posed Probl. 2, 61–76.Google Scholar
Hofmann, B. and S, Kindermann (2010), On the degree of ill-posedness for linear problems with non-compact operators, Methods Appl. Anal. 17, 445–461.Google Scholar
Holmgren, E. (1900), Sur un théorème de M. V. Volterra sur l'inversion des intégrales définies, Atti R. Accad. Sci. Torino 35, 570–580.Google Scholar
Hönig, C.S. (1975), Volterra Stieltjes-Integral Equations (Amsterdam: North-Holland).
de Hoog, F.R. and R.S., Anderssen (2006), Regularization of first kind integral equations with application to Couette viscometry, J. Integral Equations Appl. 18, 249–265.Google Scholar
de Hoog, F.R. and R.S., Anderssen (2010), Kernel perturbations for Volterra convolution integral equations, J. Integral Equations Appl. 22, 427–441.Google Scholar
de Hoog, F.R. and R.S., Anderssen (2012a), Kernel perturbations for convolution first kind Volterra integral equations, J. Math-for-Ind. 4A, 1–4.Google Scholar
de Hoog, F.R. and R.S., Anderssen (2012b), Kernel perturbations for a class of secondkind convolution Volterra equations with nonnegative kernel, Appl. Math. Lett. 25, 1222–1225.Google Scholar
Hoppensteadt, F.C. (1983), An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes, SIAM J. Appl.Math. 43, 834–843.Google Scholar
Howard, R. and A.R., Schep (1990), Norms of positive operators on L p-spaces, Proc. Amer. Math. Soc. 109 (1990), 135–146.Google Scholar
Hritonenko, N. and Yu., Yatsenko (1996), Modeling and Optimization of the Lifetime of Technologies (Dordrecht: Kluwer Academic Publishers). [Discusses numerous models involving delay VIEs; extensive list of references on related VIE models.]
Huybrechs, D. and S, Olver (2009), Highly oscillatory quadrature, in Huybrechs et al. (2009), pp. 25–50.Google Scholar
Ilhan, O.A. (2012), Solvability of some integral equations in Banach space and their applications to the theory of viscoelasticity, Abstr. Appl. Anal. 2012, 13 pp.Google Scholar
Imanaliev, M.I. and A, Asanov (2007), Regularization and uniqueness of solutions of systems of nonlinear Volterra integral equations of the third kind, Dokl. Math. 76, 490–493.Google Scholar
Iserles, A. (1993), On the generalized pantograph functional differential equation, Europ. J. Appl. Math. 4, 1–38. [Illuminating introduction to the theory of delay differential equations with proportional delay qt (0 < q < 1); references on applications.]Google Scholar
Iserles, A. (2005a), On the numerical quadrature of highly-oscillatory integrals. Irregular oscillators, IMA J. Numer. Anal. 25, 25–44.Google Scholar
Iserles, A. (2005b), On the numerical analysis of rapid oscillation, in Group Theory and Numerical Analysis (Montréal 2003) (P., Winternitz et al., eds.), pp. 149–163, CRM Proc. Lecture Notes 39 (Providence, RI: American Mathematical Society). [Survey of mathematical foundations of discretising highly oscillatory ODEs and highly oscillatory integrals.]
Iserles, A. and S.P., Nørsett (2004), On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math. 44, 755–772.Google Scholar
Ito, K. and J, Turi (1991), Numerical methods for a class of singular integrodifferential equations based on semigroup approximation, SIAM J. Numer. Anal. 28, 1698–1722.Google Scholar
Ivanov, D.V., I.V., Karaulova, E.V., Markova, V.V., Trufanov and O.V., Khamisov (2004), Control of power grid development: numerical solutions, Autom. Remote Control 65, 472–482.Google Scholar
Janikowski, J. (1962), Équation intégrale non linéaire d'Abel, Bull. Soc. Sci. Lett. Lódz 13, No. 11, 8 pp. [Existence of solutions to weakly singular first-kind VIEs; see also Branca (1978), Dixon et al. (1984), and Deimling (1995).]Google Scholar
Janno, J. (1997), On a regularization method for the autoconvolution equation, Z. Angew. Math. Mech. 77, 393–394.Google Scholar
Janno, J. and L. v., Wolfersdorf (1995), Regularization of a class of nonlinear Volterra equations of a convolution type, J. Inverse Ill-Posed Probl. 3, 249–257.Google Scholar
Janno, J. and L. v., Wolfersdorf (1996), Inverse problems for identification of memory kernels in heat flow, J. Inverse Ill-Posed Probl. 4, 39–66.Google Scholar
Janno, J. and L. v., Wolfersdorf (1997a), Identification of weakly singular memory kernels in heat conduction, Z. Angew. Math. Mech. 77, 243–257.Google Scholar
Janno, J. and L. v., Wolfersdorf (1997b), Inverse problems for identification of memory kernels in viscoelasticity, Math. Methods Appl. Sci. 20, 291–314.Google Scholar
Janno, J. and L. v., Wolfersdorf (1998), Identification of weakly singular memory kernels in viscoelasticity, Z. Angew. Math. Mech. 78, 391–403.Google Scholar
Janno, J. and L. v., Wolfersdorf (2001), Identification of a special class of memory kernels in one-dimensional heat flow, J. Inverse Ill-Posed Probl. 9, 389–411.Google Scholar
Janno, J. and L. v., Wolfersdorf (2005), A general class of autoconvolution equations of the third kind, Z. Anal. Anwendungen 24, 523–543.Google Scholar
Jiang, L.S. (2005), Mathematical Modeling and Methods of Option Pricing (Singapore: World Scientific Publishing Co.).
Jones, S., B, Jumarhon, S., McKee and J.A., Scott (1996), A mathematical model of a biosensor, J. Engrg. Math. 30, 321–337.Google Scholar
Jordan, G.S. and R.L., Wheeler (1976), A generalization of the Wiener-Lévy theorem applicable to some Volterra equations, Proc. Amer. Math. Soc. 57, 109–114. [Generalization of Shea and Wainger's 1975 result.]Google Scholar
Jörgens, K. (1970), Lineare Integraloperatoren (Stuttgart: B.G. Teubner). [English translation: Linear Integral Operators (1982), Boston, Pitman.]
Jumarhon, B., W., Lamb, S., McKee and T, Tang (1996), A Volterra type method for solving a class of nonlinear initial-boundary value problems, Numer. Methods Partial Differential Equations 12, 265–281.Google Scholar
Jung, M. (1999), Duality theory for solutions to Volterra integral equations, J. Math. Anal. Appl. 230, 112–134.Google Scholar
Kabanikhin, S.I. and A, Lorenzi (1999), Identification Problems of Wave Phenomena: Theory and Numerics (Utrecht: VSP).
Kadem, A., M., Kirane, C.M., Kirk and W.E., Olmstead (2014), Blowing-up solutions to systems of fractional differential and integral equations with exponential nonlinearities, IMA J. Appl. Math. 79, 1077–1088.Google Scholar
Kamont, Z. and M, Kwapisz (1981), On nonlinear Volterra functional integral equations in several variables, Ann. Polon. Math. 40, 1–29.Google Scholar
Kang, S.G. and G, Zhang (2003), Periodic solutions of a class of integral equations, Topol. Methods Nonlinear Anal. 22, 245–252.Google Scholar
Kappel, F. and K.P., Zhang (1986), On neutral functional differential equations with nonatomic difference operator, J. Math. Anal. Appl. 113, 311–343.Google Scholar
Karakostas, G. (1981), Convergence of the bounded solutions of a certain implicit Volterra integral equation, Funkcial. Ekvac. 24, 351–361.Google Scholar
Karakostas, G., I.P., Stavroulakis and Y.M., Wu (1993), Oscillation of Volterra integral equations with delay, Tohoku Math. J. 45, 583–605.Google Scholar
Karapetyants, N.K., A.A., Kilbas, M., Saigo and S.G., Samko (2000), Upper and lower bounds for solutions of nonlinear Volterra convolution integral equations with power nonlinearity, J. Integral Equations Appl. 12, 421–448.Google Scholar
Karczewska, A. (2007), Convolution Type Stochastic Volterra Equations, Lecture Notes in Nonlinear Analysis, 10 (Torun: Juliusz Schauder Center for Nonlinear Studies).
Karczewska, A. (2009), Regularity of solutions to stochastic Volterra equations of convolution type, Integral Transforms Spec. Funct. 20, 171–176.Google Scholar
Karczewska, A. and C, Lizama (2009), Strong solutions to stochastic Volterra equations, J. Math. Anal. Appl. 349, 301–310.Google Scholar
Kato, T. (1995), Perturbation Theory for Linear Operators (reprint of the 1980 edition) (Berlin: Springer-Verlag).
Kauthen, J.-P. (1993), ε-expansions of solutions of singularly perturbed weakly singular Volterra integral equations of the second kind, private communication.
Kauthen, J.-P. (1997), A survey of singularly perturbed Volterra equations, Appl. Numer. Math. 24, 95–114.Google Scholar
Kauthen, J.-P. (2000), The numerical solution of integral-algebraic equations of index 1 by polynomial spline collocation methods, Math. Comp. 70, 1503–1514.Google Scholar
Kawarada, H. (1975), On solutions of initial boundary value problem for ut = uxx + 1/(1 - u), Publ. Res. Inst. Math. Sci. 10, 729–736.Google Scholar
Keller, J.B. and W.E., Olmstead (1971), Temperature of a nonlinearly radiating semiinfinite solid, Quart. Appl. Math. 29, 559–566.Google Scholar
Keller, J.J. (1981), Propagation of simple non-linear waves in gas filled tubes with friction, J. Appl. Math. Phys. (ZAMP) 32, 170–181.Google Scholar
Kershaw, D. (1999), Operator norms of powers of the Volterra operator, J. Integral Equations Appl. 11, 351–362.Google Scholar
Khasi, M., F., Ghoreishi and M, Hadizadeh (2014), Numerical analysis of a high-order method for state-dependent integral equations, Numer. Algor. 66, 177–201.Google Scholar
Kilbas, A.A. and M, Saigo (1995), On solution of integral equation of Abel-Volterra type, Differential Integral Equations 8, 993–1011.Google Scholar
Kilbas, A.A. and M, Saigo (1999), On solution of nonlinear Abel-Volterra integral equation, J. Math. Anal. Appl. 229, 41–60.Google Scholar
Kirk, C.M., W.E., Olmstead and C.A., Roberts (2013), A system of nonlinear Volterra equations with blow-up solutions, J. Integral Equations Appl. 25, 377–393.Google Scholar
Kirk, C.M. and C.A., Roberts (2002), A quenching problem for the heat equation, J. Integral Equations Appl. 14, 53–72.Google Scholar
Kirk, C.M. and C.A., Roberts (2003), A review of quenching results in the context of nonlinear Volterra equations, Dynam. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 343–356.Google Scholar
Kirsch, A. (1996), An Introduction to the Theory of Inverse Problems (New York: Springer-Verlag).
Kiryakova, V.S. (2000), Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118, 241–259.Google Scholar
Klebanov, B.S. and B.D., Sleeman (1996), An axiomatic theory of Volterra integral equations, Differential Integral Equations 9, 397–408. [See also Väth (1998a,1998b,1999).]Google Scholar
Kolk, M. and A, Pedas (2013), Numerical solution of Volterra integral equations with singularities, Front. Math. China 8, 239–259.Google Scholar
Kosel, U. and L. v., Wolfersdorf (1986), Nichtlineare Integralgleichungen, Seminar Analysis, 93–128, Karl-Weierstrass-Institut für Mathematik (Berlin: Akademie der Wissenschaften der DDR).
Kowalewski, G. (1930), Integralgleichungen (Berlin: W. de Gruyter & Co.). [Goursat problem: see pp. 83–90. Also, Chapter 1 contains many classical results often not found in more recent books.]
Krasnosel'skii, M.A.and P.P., Zabreiko (1984), Geometric Methods of Nonlinear Analysis (Berlin-Heidelberg-New York: Springer-Verlag).
Krasnosel'skii, M.A., P.P., Zabreiko, E.I., Pustyl'nik and P.E., Sobolevskii (1976), Integral Operators in Spaces of Summable Functions (Leiden: Nordhoff International Publishing).
Krasnov, M., A., Kissélev and G, Makarenko (1977), Équations Intégrales: Problèmes et Exercises (Moscow: Éditions Mir). [Contains numerous examples and solved problems of Volterra integral equations.]
Kress, R. (2014), Linear Integral Equations (Third edition) (New York: Springer- Verlag).
Kufner, A., O., John and S, Fucíik (1977), Function Spaces (Leyden: Noordhoff International Publishing). [See also the revised and extended edition (2013) by L. Pick, A. Kufner, O. John & S. Fucík, Function Spaces. Vol 1 (Berlin, de Gruyter).]
Kunkel, P. and V, Mehrmann (2006), Differential-Algebraic Equations: Analysis and Numerical Solution (Zürich: European Mathematical Society).
Kwapisz, J. (1991a), Weighted norms and Volterra integral equations in L p spaces, J. Appl. Math. Stoch. Anal. 4, 161–164.Google Scholar
Kwapisz, M. (1991b), Bielecki's method, existence and uniqueness results for Volterra integral equations in Lp space, J. Math. Anal. Appl. 154, 403–416.Google Scholar
Kwapisz, M. (1991c), Remarks on the existence and uniqueness of solutions of Volterra functional equations in Lp spaces, J. Integral Equations Appl. 3, 383–397.Google Scholar
Kwapisz, J. (1993), A note on multidimensional Volterra integral equations in Lp spaces, Houston J. Math. 19, 275–280.Google Scholar
Kwapisz, M. and J, Turo (1983), Existence and uniqueness of solution for some integral-functional equation, Comment. Math. Prace Mat. 23, 259–267.Google Scholar
Kwok, Y.K. (2008), Mathematical Models of Financial Derivatives (Second Edition) (Berlin: Springer).
Lakshmikantham, V. (ed.) (1987), Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math. 109 (New York: Marcel Dekker). [Contains numerous papers on the analysis and application of Volterra integral and functional equations.]
Lalesco, T. (1908), Sur l'équation de Volterra, Thèse (Paris: Gauthier-Villars); J. Math. Pures Appl. (6) 4, 123–202. [Study of nonlinear VIEs: pp. 165–168.]
Lalesco, T. (1911), Sur une équation intégrale du type Volterra, C.R. Acad. Sci. Paris 52, 579–580. [x α(x) N(x, s)ϕ(s)ds = F(x), with α(x) tangent to y = x; see also Denisov & Korovin (1992) and Denisov & Lorenzi (1995) for generalisations.]Google Scholar
Lalesco, T. (1912), Introduction à la Théorie des Équations Intégrales (Paris: Hermann & Fils). [Contains chronological bibliography, 1826–1911.]
Lamb, W. (1985), A spectral approach to an integral equation, Glasgow Math. J. 26, 83–89. [Inversion formulas for first-kind VIEs with kernels of the form (t/s)n(log(t/s))α-1.]Google Scholar
Lamm, P.K. (2000), A survey of regularization methods for first-kind Volterra equations, in Surveys on Solution Methods for Inverse Problems (D., Colton, H., Engl et al., eds.), pp. 53–82 (Vienna: Springer–Verlag). [See also Ring & Prix (2000).]
Lamour, R., R., März and C, Tischendorf (2013), Differential-Algebraic Equations: A Projector Based Analysis, Differential-Algebraic Equations Forum (Heidelberg: Springer).
Landau, H. (1977), The notion of approximate eigenvalues applied to integral equations of laser theory, Quart. Appl. Math. 35, 165–172.Google Scholar
Lange, C.G. and D.R., Smith (1988), Singular perturbation analysis of integral equations, Stud. Appl. Math. 79, 1–63; Part II: 90, 1–74.Google Scholar
Lao, N. and R, Whitley (1997), Norms of powers of the Volterra operator, Integral Equations Operator Theory 27, 419–425.Google Scholar
Lauricella, G. (1908), Sulle equazioni integrali, Ann. Mat. Pura Appl. (3) 15, 21–45. [Survey paper on early development of theory of integral equations.]Google Scholar
Le Roux, J. (1895), Sur les intégrales des équations linéaires aux dérivées partielles du second ordre à deux variables indépendantes (Thèse), Ann. Sci. Ecole Normale Supér. (3) 12, 227–316. [Convergence of Picard iteration for second-kind VIEs: uniform bounds for Neumann series by geometric series.]Google Scholar
Levin, D. (1997), Analysis of a collocation method for integrating rapidly oscillating functions, J. Comput. Appl. Math. 78, 131–138.Google Scholar
Levin, J.J. (1963), The asymptotic behavior of the solution of a Volterra integral equations, Proc. Amer. Math. Soc. 14, 534–541.Google Scholar
Levin, J.J. (1965), The qualitative behavior of a nonlinear Volterra equation, Proc. Amer. Math. Soc. 16, 711–718.Google Scholar
Levin, J.J. (1977), Resolvents and bounds for linear and nonlinear Volterra equations, Trans. Amer. Math. Soc. 228, 207–222. [Consult also for references on related results for nonlinear VIEs.]Google Scholar
Levin, J.J. (1980), Nonlinearly perturbed Volterra equations, Tôhoku Math. J. (2) 32, 317–335.Google Scholar
Levine, H.A. (1983), The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14, 1139–1153.Google Scholar
Levine, H.A. (1990), The role of critical exponents in blowup theorems, SIAM Rev. 32, 262–288.Google Scholar
Levine, H.A. (1992), Advances in quenching, in Nonlinear Diffusion Equations and Their Equilibrium States, 3 (N.G., Lloyd et al., eds.), 319–346, Progress in Nonlinear Differential Equations (Boston: Birkhäuser).
Levinson, N. (1960), A nonlinear Volterra equation arising in the theory of superfluidity, J. Math. Anal. Appl. 1, 1–11. [Compare also Mann & Wolf (1951) for a related simpler model.]Google Scholar
Lewin, M. (1994), On solutions of singularly perturbed stochastic Volterra equations, Libertas Math. 14, 51–63.Google Scholar
Liang, H. and H, Brunner (2012), Discrete superconvergence of collocation solutions for first-kind Volterra integral equations, J. Integral Equations Appl. 24, 359–391.Google Scholar
Liang, H. and H, Brunner (2013), Integral-algebraic equations: theory of collocation methods I, SIAM J. Numer. Anal. 51, 2238–2259.Google Scholar
Liang, H. and H, Brunner (2016), Integral-algebraic equations: theory of collocation methods II, SIAM J. Numer. Anal. 54, 2640–2663.Google Scholar
Lifshits, M.A. and W, Linde (2002), Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc. 157, No. 745.Google Scholar
Lighthill, M.J. (1950), Contributions to the theory of heat transfer through a laminar boundary layer, Proc. Roy. Soc. London Ser. A 202, 359–377. [Compare also Curle (1978).]Google Scholar
Lin, Q. (1963), Comparison theorems for difference-differential equations, Sci. Sinica 12, 449. [Vector VIEs with constant delay; stability results by comparison with scalar VIE.]Google Scholar
Ling, R. (1978), Integral equations of Volterra type, J. Math. Anal. Appl. 64, 381–397. [Number of zeros, boundedness and monotonicity of solutions; see also Friedman (1963) for earlier results.]Google Scholar
Ling, R. (1982), Solutions of singular integral equations, Int. J. Math. Math. Sci. 5, 123–131.Google Scholar
Linz, P. (1985), Analytical and Numerical Methods for Volterra Equations (Philadelphia: SIAM).
Linz, P. and B, Noble (1971), A numerical method for treating identation problems, J. Engrg. Math. 5, 227–231.Google Scholar
Lipovan, O. (2006), Integral inequalities for retarded Volterra equations, J. Math. Anal. Appl. 322, 349–358.Google Scholar
Lipovan, O. (2009), On the asymptotic behavior of solutions to some nonlinear integral equations of convolution type, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16, 147–154.Google Scholar
Little, G. and J.B., Reade (1998), Estimates for the norm of the nth indefinite integral, Bull. London Math. Soc. 30, 539–542.Google Scholar
Lizama, C. (1993), On Volterra equations associated with a linear operator, Proc. Amer. Math. Soc. 118, 1159–1166.Google Scholar
Lizama, C. and M.P., Velasco (2015), Abstract Volterra equations with state-dependent delay, J. Integral Equations Appl. 27, 219–231.Google Scholar
Lobanova, M.S. and Z.B., Tsalyuk (2015), Asymptotics of the solution of a Volterra integral equation with difference kernel, Math. Notes 97, 396–401.Google Scholar
Londen, S.-O. (1984), Asymptotic estimates for resolvents of some integral equations, in Infinite-Dimensional Systems (Retzhof 1983) (F., Kappel and W, Schappacher, eds.), pp. 139–146, Lecture Notes in Math. 1076 (New York: Springer-Verlag).
Londen, S.-O. and O.J., Staffans (eds.) (1979), Volterra Equations (Otaniemi, 1978), Lecture Notes in Math. 737 (Berlin-Heidelberg-New York: Springer-Verlag).
Lotka, A.J. (1939), A contribution to the theory of self-renewing aggregates, with special reference to industrial replacement, Ann. Math. Statist. 10, 1–25.Google Scholar
Lotka, A.J. (1939a), Analytical Theory of Biological Populations (New York: Plenum Press). [Translation of the 1939 French edition; review of renewal equation and mathematical demography of single populations.]
Lotka, A.J. (1942), The progeny of an entire population, Ann. Math. Statist. 13, 115–126.Google Scholar
Lotka, A.J. (1945), in Population Analysis as a Chapter in the Mathematical Theory of Evolution (Essays on Growth and Form Presented to D'Arcy Wentworth Thompson) (W.E. Le Gros, Clark and P.B., Medawar, eds.), 355–385 (Oxford: Clarendon Press). [Review of integral equation of renewal theory.]
Lowengrub, M. and J, Walton (1979), Systems of generalized Abel equations, SIAM J. Math. Anal. 4, 794–807.Google Scholar
Loy, R.J. and R.S., Anderssen (2014), Interconversion relationships for completely monotone functions, SIAM J. Math. Anal. 46, 2008–2032.Google Scholar
Lubich, Ch. (1983a), Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comp. 41, 87–102. [Contains also proofs of Paley-Wiener theorems for VIEs and VIDEs.]Google Scholar
Lubich, Ch. (1986), A stability analysis of convolution quadrature for Abel-Volterra integral equations, IMA J. Numer. Anal. 6, 87–101.Google Scholar
Lubich, Ch. (1987), Fractional linear multistep methods for Abel-Volterra integral equations of the first kind, IMA J. Numer. Anal. 7, 97–106.Google Scholar
Lyubich, Yu.I. (1984), Composition of integration and substitution, in Linear and Complex Analysis Problem Book (V.P., Havin et al., eds.), 249–250, Lecture Notes in Math. 1043 (New York: Springer-Verlag).
Magnickii, N.A.(1979), Linear Volterra integral equations of the first and third kinds (in Russian), Zh. Vychisl. Mat. i Mat. Fiz. 19, 970–988, 1083.Google Scholar
Mainardi, F. (2010), Fractional Calculus and Waves in Linear Viscoelasticity (London: Imperial College Press).
Mainardi, F. and R, Gorenflo (2000), On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math. 118, 283–299. [Survey and extensive list of references, including historical ones.]Google Scholar
Małolepszy, T. and W, Okrasínski (2007), Conditions for blow-up of solutions of some nonlinear Volterra integral equations, J. Comput. Appl. Math. 205, 744–750.Google Scholar
Małolepszy, T. and W, Okrasínski (2008), Blow-up conditions for nonlinear Volterra integral equations with power nonlinearity, Appl. Math. Lett. 21, 307–312.Google Scholar
Małolepszy, T. and W., Okrasínski (2010), Blow-up time for solutions to some nonlinear Volterra integral equations, J. Math. Anal. Appl. 366, 372–384.Google Scholar
Mandal, N., A., Chakrabarti and B.N., Mandal (1996), Solution of a system of generalized Abei integral equations using fractional calculus, Appl. Math. Lett. 9, 1–4.Google Scholar
Mann, W.R. and F, Wolf (1951), Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9, 163–184.Google Scholar
März, R. (1992), Numerical methods for differential algebraic equations, Acta Numer. 1, 141–198.Google Scholar
März, R. (2002a), The index of linear differential-algebraic equations with properly stated leading terms, Results Math. 42, 308–338.Google Scholar
März, R. (2002b), Differential algebraic equations anew, Appl. Numer. Math. 42, 315–335.Google Scholar
März, R. (2004a), Solvability of linear differential algebraic equations with properly stated leading terms, Results Math. 45, 88–105.Google Scholar
März, R. (2004b), Fine decouplings of regular differential algebraic equations, Results Math. 46, 57–72.Google Scholar
McKee, S. (1982), Generalised discrete Gronwall lemmas, Z. Angew. Math. Mech., 62, 429–434.Google Scholar
McKee, S. and J.A., Cuminato (2015), Nonlocal diffusion, aMittag-Leffler function and a two-dimensional Volterra integral equation, J. Math. Anal. Appl. 423, 243–252.Google Scholar
Mann, W.R. and F, Wolf (1951), Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math., 9, 163–184.Google Scholar
Meehan, M. and D, O'Regan (1999), A comparison technique for integral equations, Irish Math. Soc. Bull. 42, 54–71. [Extension of comparison results of Friedman Friedman (1963) and Miller (1968b).]Google Scholar
Megginson, R.E. (1998), An Introduction to Banach Space Theory (New York: Springer-Verlag).
Medhin, N.G. (1986), Optimal processes governed by integral equations, J. Math. Anal. Appl. 120, 1–12.Google Scholar
Meis, T. (1978), Eine spezielle Integralgleichung erster Art, in Numerical Treatment of Differential Equations (Oberwolfach 1976) (R., Bulirsch, R.D., Grigorieff and J., Schröder, eds.), pp. 107–120, Lecture Notes in Math. 631 (Berlin-Heidelberg: Springer-Verlag).
Metz, J.A.J. and O, Diekmann (eds.) (1986), The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath. 68 (Berlin-Heidelberg: Springer-Verlag). [See in particular Ch. IV on age dependence where VIEs are introduced as a “natural modelling tool”.]
Mikhlin, S.G. and S, Prössdorf (1986), Singular Integral Operators (Berlin-Heidelberg- New York: Springer-Verlag).
Miller, R.K. (1966), Asymptotic behavior of solutions of nonlinear Volterra equations, Bull. Amer. Math. Soc. 72, 153–156.Google Scholar
Miller, R.K. (1968a), On the linearization of Volterra integral equations, J. Math. Anal. Appl. 23, 198–208.Google Scholar
Miller, R.K. (1968b), On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl. 22, 319–340.Google Scholar
Miller, R.K. (1971), Nonlinear Volterra Integral Equations (Menlo Park, CA: Benjamin).
Miller, R.K. (1975a), A system of renewal equations, SIAM J. Appl. Math. 29, 20–34.Google Scholar
Miller, R.K. (1975b), Volterra integral equations in a Banach space, Funkcial. Ekvac. 18, 163–194.Google Scholar
Miller, R.K. (2000), Volterra integral equations at Wisconsin, in Corduneanu & Sandberg (2000), pp. 15–26.Google Scholar
Miller, R.K. and A, Feldstein (1971), Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM J. Math. Anal. 2, 242–258.Google Scholar
Miller, R.K., J.A., Nohel and J.S.W., Wong (1969), Perturbations of Volterra integral equations, J. Math. Anal. Appl. 25, 676–691.Google Scholar
Miller, R.K. and G.R., Sell (1968), Existence, uniqueness and continuity of solutions of integral equations, Ann. Mat. Pura Appl. (IV) 80, 135–152.Google Scholar
Miller, R.K. and G.R., Sell (1970), Existence, uniqueness and continuity of solutions of integral equations. An addendum, Ann. Mat. Pura Appl. (IV) 87, 281–286.Google Scholar
Miller, R.K. and G.R., Sell (1970a), Volterra Integral Equations and Topological Dynamics, Memoirs Amer. Math. Soc. 102 (Providence, RI: American Mathematical Society).
Miller, R.K. and A, Unterreiter (1992), Switching behavior of PN-diodes: Volterra integral equation models, J. Integral Equations Appl. 4, 257–272. [The paper complements Schmeiser et al. (1993) and Unterreiter (1996).]Google Scholar
Mingarelli, A. (1983), Volterra–Stieltjes Integral Equations and Generalized Ordinary Differential Equations, Lecture Notes in Math. 989 (Berlin-New York: Springer-Verlag).
Mittag-Leffler, G.M. (1903), Sur la nouvelle fonction Eα(x), C.R. Acad. Sci. Paris Sér. II 137, 554–558. [Compare also Winan (1905), Hille & Tamarkin (1930), and Pollard (1948).]Google Scholar
Monna, A.F. (1973), Functional Analysis in Historical Perspective (Utrecht: Oosthoek Publishing Company).
Muresan, V. (1999), On a class of Volterra integral equations with deviating argument, Studia Univ. Babes-Bolyai Math. XLIV, 47–54.Google Scholar
Mydlarczyk, W. (1990), Galerkin methods for nonlinear Volterra type equations, Zastos. Mat. 20, 625–638.Google Scholar
Mydlarczyk, W. (1991), The existence of nontrivial solutions of Volterra integral equations, Math. Scand. 68, 83–88.Google Scholar
Mydlarczyk, W. (1992), The existence of nontrivial solutions for a class of Volterra equations with smooth kernels, Math. Scand. 71, 261–266.Google Scholar
Mydlarczyk, W. (1994), A condition for finite blow-up time for a Volterra integral equation, J. Math. Anal. Appl. 181, 248–253. [A related early blow-up result may be found in Miller's 1971 book; see also Herdman (1977).]Google Scholar
Mydlarczyk, W. (1996), The existence of solutions to a Volterra integral equation, Ann. Polon. Math. 64, 175–182. [Compare also [147].]Google Scholar
Mydlarczyk, W. (1999), The blow-up solution of integral equations, Colloq. Math. 79, 147–156. [Survey and generalisation of results in Mydlarczyk (1994) and Olmstead et al. (1995).]Google Scholar
Mydlarczyk, W. (2001), A nonlinear Abel integral equation on the whole line, Nonlinear Anal. 45, 273–279.Google Scholar
Mydlarczyk, W. and W, Okrasínskii (2001), Positive solutions to a nonlinear Abel-type integral equation on the whole line, Comput. Math. Appl. 41, 835–842. [Sequel to Mydlarczyk (2001).]Google Scholar
Mydlarczyk, W. and W, Okrasínski (2003), Nonlinear Volterra integral equations with convolution kernels, Bull. London Math. Soc. 35, 484–490.Google Scholar
Mydlarczyk, W. W., Okrasínski and C.A., Roberts (2005), Blow-up solutions to a system of nonlinear Volterra equations, J. Math. Anal. Appl. 301, 208–218.Google Scholar
Nelson, P.Jr and G, Young (1968), Minimizing the natural fuel requirement for nuclear reactor power systems: a nonstandard optimal control problem, J. Optmization Theory Appl. 2, 138–154.Google Scholar
Neustadt, L.W. and J, Warga (1970), Comments on the paper “Optimal control of processes described by integral equations.I” by V.R. Vinokurov, SIAM J. Control 8, 572.Google Scholar
Neves, K.W. and A, Feldstein (1976), Characterization of jump discontinuities for statedependent delay differential equations, J. Math. Anal. Appl. 56, 689–707.Google Scholar
Ney, P. (1977), The asymptotic behavior of a Volterra-renewal equation, Trans. Amer. Math. Soc. 228, 147–155.Google Scholar
Niedziela, M. and W, Okrasínski (2006), A note on Volterra integral equations with power nonlinearity, J. Integral Equations Appl. 18, 509–519.Google Scholar
Niemytzki, W. (1934), Théorie d'existence des solutions de quelques équations intégrales non-linéaires, Mat. Sb. 41, 438–452.Google Scholar
Noble, B. (1964), The numerical solution of nonlinear integral equations and related topics, in Anselone (1964), pp. 215–318. [“Inversion” of Lighthill's equation: p. 308.]
Nohel, J.A. (1962), Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc. 68, 323–329.Google Scholar
Nohel, J.A. (1964), Problems in qualitative behavior of solutions of nonlinear Volterra equations, in Anselone (1964), pp. 191–214.
Nohel, J.A. (1976), Review of “C. Corduneanu, Integral Equations and Stability of Feedback Systems (Academic Press, New York, 1973)”, SIAM Rev. 12, 520–526. [Describes also the state of the art and open problems in the qualitative behaviour of solutions of Volterra equations.]Google Scholar
Nohel, J.A. and D.F., Shea (1976), Frequency domain methods for Volterra equations, Adv. in Math. 22, 278–304.Google Scholar
Norbury, J. and A.M., Stuart (1987), Volterra integral equations and a new Gronwall inequality. I. The linear case; II. The nonlinear case, Proc. Roy. Soc. Edinburgh Sect. A 106, 361–373; 375–384.Google Scholar
Nussbaum, R.D. (1977), Periodic solutions of some nonlinear integral equations, in Dynamical Systems (Univ. Florida, Gainsville, 1976) (A.R., Bednarek and L., Cesari, eds.), 221–249 (New York: Academic Press).
Nussbaum, R.D. (1980), A quadratic integral equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, 375–480.Google Scholar
Nussbaum, R.D. (1981), A quadratic integral equation. II, Indiana Univ. Math. J. 30, 871–906.Google Scholar
Nussbaum, R.D. and N, Baxter (1981), A nonlinear integral equation, Nonlinear Anal. 5, 1285–1307.Google Scholar
Okrasínski, W. (1979), On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation, Ann. Polon. Math. 36, 61–72.Google Scholar
Okrasínski, W. (1980), On a non-linear convolution equation occurring in the theory of water percolation, Ann. Polon. Math. 37, 223–229.Google Scholar
Okrasínski, W. (1984), Non-negative solutions of some nonlinear integral equations, Ann. Polon. Math. 44, 209–218. [Special implicit VIEs: W(u(t)) = t 0 k(t - s)u(s)ds; see also Buckwar (1997,2000).]Google Scholar
Okrasínski, W. (1986), On a nonlinear Volterra equation, Math. Methods Appl. Sci. 8, 345–350.Google Scholar
Okrasínski, W. (1989), Nonlinear Volterra equations and physical applications, Extracta Math. 4, 51–80.Google Scholar
Okrasínski, W. (1991a), Nontrivial solutions for a class of nonlinear Volterra equations with convolution kernel, J. Integral Equations Appl. 3, 399–409.Google Scholar
Okrasínski, W. (1991b), Nontrivial solutions to nonlinear Volterra integral equations, SIAM J. Math. Anal. 22, 1007–1015.Google Scholar
Okrasínski, W. (2000), Uniqueness of problems for some classes of nonlinear Volterra equations, in Agarwal & O'Regan (2000), pp. 259–267.
Øksendal, B. and T.S., Zhang (2010), Optimal control with partial information for stochastic Volterra equations, Int. J. Stoch. Anal. 2010, Art. ID 329185, 25 pp.Google Scholar
Olmstead, W.E. (1972), Singular perturbation analysis of a certain Volterra integral equation, Z. Angew. Math. Phys. 23, 889–900.Google Scholar
Olmstead, W.E. (1977), A nonlinear integral equation associated with gas absorption in a liquid, Z. Angew. Math. Phys. 28, 513–523.Google Scholar
Olmstead, W.E. (1983), Ignition of a combustible half space, SIAM J. Appl. Math. 43, 1–15.Google Scholar
Olmstead, W.E. (1997), Critical speed for the avoidance of blow-up in a reactivediffusive medium, Z. Angew. Math. Phys. 48, 701–710.Google Scholar
Olmstead, W.E. (2000), Blow-up solutions of Volterra equations, in Corduneanu & Sandberg (2000), pp. 385–389.
Olmstead, W.E. and R.A., Handelsman (1972), Singular perturbation analysis of a certain Volterra integral equations, Z. Angew. Math. Phys. 23, 889–900.Google Scholar
Olmstead, W.E. and R.A., Handelsman (1976a), Asymptotic solution to a class of nonlinear Volterra integral equations. II, SIAM J. Appl. Math. 30, 180–189. [See Handelsman & Olmstead (1972) for Part I.]Google Scholar
Olmstead, W.E. and R.A., Handelsman (1976b), Diffusion in a semi-infinite region with nonlinear surface dissipation, SIAM Review 18, 275–291.Google Scholar
Olmstead, W.E., C.M., Kirk and C.A., Roberts (2010), Blow-up in a subdiffusive medium with advection, Discrete Contin. Dynam. Syst. 28, 1655–1667.Google Scholar
Olmstead, W.E. and C.A., Roberts (1994), Explosion in a diffusive strip due to a concentrated nonlinear source, Methods Appl. Anal. 1, 434–445.Google Scholar
Olmstead, W.E. and C.A., Roberts (1996), Explosion in a diffusive strip due to a source with local and nonlocal features, Meth. Appl. Analysis 3, 345–357.Google Scholar
Olmstead, W.E. and C.A., Roberts (2001), Critical speed for quenching, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8, 77–88.Google Scholar
Olmstead, W.E. and C.A., Roberts (2008), Thermal blow-up in a subdiffusive medium, SIAM J. Appl. Math. 69, 514–523.Google Scholar
Olmstead, W.E., C.A., Roberts and K, Deng (1995), Coupled Volterra equations with blow-up solutions, J. Integral Equations Appl. 7, 499–516. [See also the survey papers by Roberts (1998,2007).]Google Scholar
O'Malley, R.E.Jr (1991), Singular Perturbation Methods for Ordinary Differential Equations (New York: Springer-Verlag).
O'Regan, D. and M.M., Meehan (1998), Existence Theory for Nonlinear Integral and Integrodifferential Equations (Dordrecht: Kluwer Academic Publishers).
Osher, S.J. (1967), Two papers on similarity of certain Volterra integral operators, Memoirs Amer. Math. Soc. 73, 47 pp.Google Scholar
Pachpatte, B.G. (1998), Inequalities for Differential and Integral Equations (San Diego, CA: Academic Press).
Padmavally, K. (1958), On a non-linear integral equation, J. Math. Mech. 7, 533–555. [Generalisation of results in Mann & Wolf (1951) and Roberts & Mann (1951).]Google Scholar
Panin, A.A. (2015), On local solvability and blow-up of solutions of an abstract nonlinear Volterra integral equation, Math. Notes 97, 892–908.Google Scholar
Paley, R.E.A.C. and N, Wiener (1934), Fourier Transforms in the Complex Domain, Colloquium Publications XIX(Providence, RI: American Mathematical Society).
Paveri-Fontana, S.L. and R, Rigacci (1979), A singularly perturbed weakly-singular integro-differential problem from analytical chemistry, in Numerical Analysis of Singular Perturbation Problems (Nijmegen, 1978) (P.W., Hemker and J.J.H., Miller, eds.), 475–484 (London-New York: Academic Press).
Pedas, A. (ed.) (1999), Differential and Integral Equations: Theory and Numerical Analysis (dedicated to Professor Gennadi Vainikko on his 60th birthday) (Tartu: Estonian Mathematical Society).
Pedas, A. and G, Vainikko (2006), Integral equations with diagonal and boundary singularities of the kernel, Z. Anal. Anwendungen 25, 487–516.Google Scholar
Peirce, A. and E, Siebrits (1996), Stability analysis of model problems for elastodynamic boundary element discretization, Numer. Methods Partial Differential Equations 12, 585–613. [Model problems: first-kind VIEs with convolution kernels in one and two dimensions.]Google Scholar
Peirce, A. and E, Siebrits (1997), Stability analysis and design of time-stepping schemes for general elastodynamic boundary element models, Internat. J. Numer. Methods Engrg. 40, 319–342.Google Scholar
Pereverzev, S.V. and S, Prössdorf (1997), A discretization of Volterra integral equations of the third kind with weakly singular kernels, J. Inverse Ill-Posed Probl. 5, 565–577.Google Scholar
Pereverzev, S.V., E., Schock and S.G., Solodky (1999), On the efficient discretization of integral equations of the third kind, J. Integral Equations Appl. 11, 501–513.Google Scholar
Peskir, G. (2002), On integral equations arising in the first-passage problem for Brownian motion, J. Integral Equations Appl. 14, 397–423.Google Scholar
Picard, É. (1890), Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl. (4) 6, 145–210. [See pp. 197–200 for the “Picard iteration” process.]Google Scholar
Picard, É. (1907), Sur une équation fonctionnelle se présentant dans la théorie de certaines équations aux dérivées partielles, C.R. Acad. Sci. Paris 144, 1009–1012.Google Scholar
Picard, É. (1911), Sur les équations intégrales de troisième espèce, Ann. Sci. École Norm. Sup. (3) 28, 459–472.Google Scholar
Picone, M. (1960), Sull' equazione integrale non lineare di Volterra, Ann. Mat. Pura Appl. (4) 49, 1–10.Google Scholar
Pietsch, A. (2007), History of Banach Spaces and Linear Operators (Boston: Birkhäuser).
Piila, J. (1996), Characterization of the membrane theory of a clamped shell. The hyperbolic case, Math. Methods Appl. Sci. 6, 169–194.Google Scholar
Piila, J. and J, Pitkäranta (1996), On the integral equation f (x) - (c/L(x)) x L(x) f (y)dy = g(x), where L(x) = min﹛ax, 1﹜, a > 1, J. Integral Equations Appl. 8, 363–378.Google Scholar
Pimbley, G.H.Jr (1967), Positive solutions of a quadratic integral equation, Arch. Rational Mech. Anal. 24, 107–127.Google Scholar
Pishbin, S. (2015a), Optimal convergence results of piecewise polynomial collocation solutions for integral-algebraic equations of index-3, J. Comput. Appl. Math. 279, 209–224.Google Scholar
Pishbin, S. (2015b), On the numerical solution of integral equations of the fourth kind with higher index: differentiability and tractability index-3, J. Math. Model. 2, 156–169.Google Scholar
Pishbin, S., F., Ghoreishi and M, Hadizadeh (2013), The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatment, J. Comput. Appl. Math. 245, 121–132.Google Scholar
Plato, R. (1997), Resolvent estimates for Abel integral operators and the regularization of associated first kind integral equations, J. Integral Equations Appl. 9, 253–278.Google Scholar
Pollard, H. (1948), The completely monotonic character of the Mittag-Leffler function Eα-x, Bull. Amer. Math. Soc. 54, 1115–1116.Google Scholar
Polyanin, A.D. and A.V., Manzhirov (2008), Handbook of Integral Equations (Second edition) (Boca Raton, FL, Chapman & Hall). [Excellent source of examples of first-kind and second-kind VIEs.]
Porath, G. (1974), Lineare Volterra Integralgleichungen zweiter Art mit Kernen vom allgemeinen Typ, Beiträge Numer. Math. 2, 147–162.Google Scholar
Precup, R. (2002), Methods in Nonlinear Integral Equations (Dordrecht: Kluwer Academic Publishers).
Prössdorf, S. and B, Silbermann (1991), Numerical Analysis for Integral and Related Operator Equations (Basel-Boston: Birkhäuser Verlag).
Prüss, J. (2012), Evolutionary Integral Equations and Applications (Basel-Boston: Birkhäuser Verlag). [See also for discussion of semigroup approaches for evolutionary integral equations and applications; extensive bibliography.]
Pukhnacheva, T.P. (1990), A functional equation with contracting argument, Siberian Math. J. 31, 365–367.Google Scholar
Pulyaev, V.F. and Z.B., Tsalyuk (1991), On the asymptotic behavior of solutions of Volterra integral equations in Banach spaces, Soviet Math. (Iz. VUZ) 35, 48–55.Google Scholar
Rabier, P.J. and W.C., Rheinboldt (2002), Theoretical and numerical analysis of differential-algebraic equations, in Handbook of Numerical Analysis, Vol. VIII (P.G., Ciarlet and J.L., Lions, eds.), pp. 183–540 (Amsterdam: North-Holland).
Ramalho, R. (1976), Existence and uniqueness theorems for a nonlinear integral equation, Math. Ann. 221, 35–44.Google Scholar
Read, C.J. (1997), Quasinilpotent operators and the invariant subspace problem, J. London Math. Soc. (2) 56, 595–606.Google Scholar
Reinermann, J. and V, Stallbohm (1971), Eine Anwendung des Edelsteinschen Fixpunktsatzes auf Integralgleichungen vom Abel-Liouvilleschen Typ, Arch. Math. (Basel) 22, 642–647. [Compare also Dinghas (1958).]Google Scholar
Reuter, G.E.H. (1956), Über eine Volterrasche Integralgleichung mit totalmonotonem Kern, Arch. Math. (Basel) 7, 59–66.Google Scholar
Reynolds, D. (1984), On linear weakly singular Volterra integral equations of the second kind, J. Math. Anal. Appl. 103, 230–262. [Extension of results by Evans of 1910 and 1911, including an analysis of third-kind VIEs.]Google Scholar
Reynolds, D.W., J.A.D, Appleby and I, Györi (2007), On exact rates of growth and decay of solutions of a linear Volterra equation in linear viscoelasticity, Note Mat. 27, 215–228.Google Scholar
Riaza, R. and R, März (2008), A simpler construction of the matrix chain defining the tractability index of linear DAEs, Appl. Math. Lett. 21, 326–331.Google Scholar
Richter, G. (1976), On the weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55, 32–42.Google Scholar
Ring, W. and J, Prix (2000), Sequential predictor-corrector regularization methods and their limitations, Inverse Problems 16, 619–633. [See the related paper by Lamm (2000).]Google Scholar
Ringrose, J.R. (1962), On the triangular representation of integral operators, Proc. London Math. Soc. (3) 12, 385–399.Google Scholar
Roberts, C.A. (1997), Characterizing the blow-up solutions for nonlinear Volterra integral equations, Nonlinear Anal. 30, 923–933.Google Scholar
Roberts, C.A. (1998), Analysis of explosion for nonlinear Volterra equations, J. Comput. Appl. Math. 97, 153–166. [Survey paper with extensive list of references.]Google Scholar
Roberts, C.A. (2000), A method to determine growth rates of nonlinear Volterra equations, in Corduneanu & Sandberg (2000), pp. 427–431.
Roberts, C.A. (2007), Recent results on blow-up and quenching for nonlinear Volterra equations, J. Comput. Appl. Math. 205, 736–743.Google Scholar
Roberts, C.A., D.G., Lasseigne and W.E., Olmstead (1993), Volterra equations which model explosion in a diffusive medium, J. Integral Equations Appl. 5, 531–546. [Analysis of blow-up solutions in weakly singular VIEs.]Google Scholar
Roberts, C.A. and W.E., Olmstead (1996), Growth rates for blow-up solutions of nonlinear Volterra equations, Quart. Appl. Math. 54, 153–159.Google Scholar
Roberts, C.A. and W.E., Olmstead (1999), Local and non-local boundary quenching, Math. Methods Appl. Sci. 22, 1465–1484.Google Scholar
Roberts, J.H. and W.R., Mann (1951), On a certain nonlinear integral equation of the Volterra type, Pacific J. Math. 1, 431–445.Google Scholar
Roos, H.-G., M., Stynes and L, Tobiska (2008), Robust Numerical Methods for Singularly Perturbed Differential Equations (Second edition) (Berlin: Springer-Verlag).
Rothe, R. (1931), Zur Abelschen Integralgleichung, Math. Z. 33, 375–387.Google Scholar
Rudin, W. (1976), Principles of Mathematical Analysis (Third edition) (New York: McGraw-Hill).
Rudin, W. (1991), Functional Analysis (Second edition) (New York: McGraw-Hill).
Saigo, M. and A.A., Kilbas (1998), On Mittag-Leffler type function and application, Integral Transform. Spec. Funct. 7, 97–112.Google Scholar
Sakaljuk, K.D. (1960), Abel's generalized integral equation, Soviet Math. Dokl. 1, 332–335.Google Scholar
Sakaljuk, K.D. (1965), The generalized Abel integral equation with inner coefficients (Russian), Kišinev. Gos. Univ. Ucen. Zap. 82, 60–68. [Compare the review in Math. Rev. 37, #3294.]Google Scholar
Samko, S.G. (1968), A generalized Abel equation and fractional integration operators, Differ. Uravn. 4, 298–314.Google Scholar
Samko, S.G., A.A., Kilbas and O.I., Marichev (1993), Fractional Integrals and Derivatives (Yverdon, Gordon and Breach). [See Section 4.3; also Kilbas & Saigo (1999) for related results on solution representations for Abel-type IEs.]
Satco, B. (2009), Volterra integral equations governed by highly oscillatory functions on time scales, An. Stiint. Univ. Ovidus Constanta Ser. Mat. 17, 233–240.Google Scholar
Sato, T. (1951), Détermination unique de solution de l'équation intégrale de Volterra, Proc. Japan Acad. 27, 276–278.Google Scholar
Sato, T. (1953a), Sur l'équation non linéaire de Volterra, Compositio Math. 11, 271–290.Google Scholar
Sato, T. (1953b), Sur l'équation intégrale xu(x) = f (x)+ x 0 K(x, t, u(t))dt, J. Math. Soc. Japan 5, 145–153.Google Scholar
Sato, T. and A, Iwasaki (1955), Sur l'équation intégrale de Volterra, Proc. Japan Acad. 31, 395–398.Google Scholar
Schechter, M. (2002), Principles of Functional Analysis (Second edition) (Providence, RI: American Mathematical Society).
Schiff, J.L. (1999), The Laplace Transform (New York: Springer-Verlag).
Schmeidler, W. (1950), Integralgleichungen mit Anwendungen in Physik und Technik (Leipzig: Akad. Verlagsgesellschaft Geest & Portig).
Schmeiser, C., A., Unterreiter and R, Weiss (1993), The switching behavior of a onedimensional pn-diodes in low injection, Math. Models Methods Appl. Sci. 3, 125–144. [Mathematical models involving singularly perturbed VIEs with weakly singular kernels; see also Miller & Unterreiter (1992) and Unterreiter (1996) for related Volterra models.]Google Scholar
Schneider, C. (1979), Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory 2, 62–68.Google Scholar
Schock, E. (1985), Integral equations of the third kind, Studia Math. 8, 1–11.Google Scholar
Seyed Allaei, S. (2015), The Numerical Solutions of Volterra Integral Equations of the Second and Third Kind, PhD Thesis, University of Lisbon, Portugal.
Seyed Allaei, S., Z.W., Yang and H, Brunner (2015), Existence, uniqueness and regularity of solutions for a class of third kind Volterra integral equations, J. Integral Equations Appl. 27, 325–342.Google Scholar
Seyed Allaei, S., Z.W., Yang and H, Brunner (2016), Numerical analysis of collocation methods for third-kind Volterra integral equations, IMA J. Numer. Anal. (to appear).
Shaikhet, L.E. (1995), On the stability of solutions of stochastic Volterra equations, Autom. Remote Control 56, 1129–1137.Google Scholar
Shaw, S., M.K., Warby and J.R., Whiteman (1997), Error estimates with sharp constants for a fading memory Volterra problem in linear solid viscoelasticity, SIAM J. Numer. Anal. 34, 1237–1254.Google Scholar
Shaw, S. and J.R., Whiteman (1996), Discontinuous Galerkin method with a-posteriori Lp(0, ti) error estimate for second-kind Volterra problems, Numer. Math. 74, 361–383.Google Scholar
Shaw, S. and J.R., Whiteman (1997), Applications and numerical analysis of partial Volterra equations: a brief survey, Comput. Methods Appl. Mech. Engrg. 150, 397–409. [Extensive bibliography on applications.]Google Scholar
Shea, D.F. and S, Wainger (1975), Variants of the Wiener-Levy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97, 312–343.Google Scholar
Shiri, B. (2014), Numerical solution of higher index nonlinear integral algebraic equations of Hessenberg type using discontinuous collocation methods, Math. Model. Anal. 19, 99–117.Google Scholar
Shiri, B., S., Shahmorad & G., Hojjati (2013), Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations, Int. J. Appl. Math. Comput. Sci. 23, 341–355.Google Scholar
Shkarin, S. (2006a), On similarity of quasinilpotent operators, J. Funct. Anal. 241, 528–556.Google Scholar
Shkarin, S. (2006b), Antisupercyclic operators and orbits of the Volterra operator, J. London Math. Soc. (2) 73, 506–528.Google Scholar
Shubin, C. (2006), Singularly perturbed integral equations, J. Math. Anal. Appl. 313, 234–250.Google Scholar
Skinner, L.A. (1995), Asymptotic solution to a class of singularly perturbed Volterra integral equations, Methods Appl. Anal. 2, 212–221.Google Scholar
Skinnner, L.A. (2000), A class of singularly perturbed singular Volterra integral equations, Asymptot. Anal. 22, 113–127.Google Scholar
Skinner, L.A. (2011), Singular Perturbation Theory (New York: Springer).
Sloss, B.G. (2002), A generalization of a Volterra integral equation, Appl. Anal. 81, 1005–1018.Google Scholar
Sloss, B.G. and W.F., Blyth (1994), Corrington's Walsh function method applied to a nonlinear integral equation, J. Integral Equations Appl. 6, 239–255.Google Scholar
Smarzewski, R. and H, Malinowski (1978), Numerical solution of a class of Abel integral equations, IMA J. Appl. Math. 22, 159–170.Google Scholar
Smith, D.R. (1985), Singular-Perturbation Theory (Cambridge University Press).
Smith, H.L. (1977), On periodic solutions of a delay integral equation modelling epidemics, J. Math. Biol. 4, 69–80. [Compare also Cooke & Kaplan (1976) and Cañada & Zetrtiti (1994).]Google Scholar
Smithies, F. (1938), The eigen-values and singular values of integral equations, Proc. London Math. Soc. (2) 43, 255–279.Google Scholar
Sneddon, I.H. (1972), The Use of Integral Transforms (New York: McGraw-Hill).
Srivastava, H.M. and R.G., Buschman (1977), Convolution Integral Equations (New York: Wiley Eastern Ltd/Wiley & Sons).
Staffans, O.J. (1984a), Semigroups generated by a convolution equation, in Infinite Dimensional Systems (Retzhof 1983) (W., Kappel and F, Schappacher, eds.), pp. 209–226, Lecture Notes in Math. 1046 (Berlin: Springer-Verlag).
Staffans, O.J. (1984b), A note on a Volterra equation with several nonlinearities, J. Integral Equations 7, 249–252.Google Scholar
Staffans, O.J. (1985), On a nonconvolution Volterra resolvent, J. Math. Anal. Appl. 108, 15–30.Google Scholar
Stewart, G.W. (2011), Three fundamental papers on integral equations: Fredholm, Hilbert, Schmidt, www.cs.umd.edu/∼stewart/FHS.pdf.
Szufla, S. (1984), On the existence of L p-solutions of Volterra integral equations in Banach spaces, Funkcial. Ekvac. 27, 157–172.Google Scholar
Tamarkin, J.D. (1930), On integrable solutions of Abel's integral equation, Ann. of Math. (2) 31, 219–229.Google Scholar
Thieme, H.R. (1977), A model for the spatial spread of an epidemic, J. Math. Biol. 4, 337–351.Google Scholar
Thieme, H.R. (1979), Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math. 306, 94–121. [Nonlinear Volterra-Fredholm integral equation; see also Diekmann (1978), Thieme & Zhao (2003), and Zhao (2003).]Google Scholar
Thieme, H.R. and X.-Q., Zhao (2003), Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations 195, 430–470.Google Scholar
Thorpe, B. (1998), The norm of powers of the indefinite integral operator on (0, 1), Bull. London Math. Soc. 30, 543–548.Google Scholar
Tonelli, L. (1928a), Su un problema di Abel, Math. Ann. 99, 183–199.Google Scholar
Tonelli, L. (1928b), Sulle equazioni funzionali del tipo di Volterra, Bull. Calcutta Math. Soc. 20, 31–48.Google Scholar
Torrejón, R. (1990), A note on a nonlinear integral equation from the theory of epidemics, Nonlinear Anal. 14, 483–488.Google Scholar
Torrejón, R. (1993), Positive almost periodic solutions of a state-dependent nonlinear integral equation, Nonlinear Anal. 20, 1383–1416.Google Scholar
Trefethen, Ll.N. and M, Embree (2005), Spectra and Pseudospectra. The Behaviour of Nonnormal Matrices and Operators (Princeton, NJ: Princeton University Press).
Tricomi, F.G. (1957), Integral Equations (New York: Interscience Publishers; New York: Dover Publications, 1985). [VIEs in L2: pp. 10–15.]
Tsalyuk, Z.B. (1968), Stability of Volterra equations, Differential Equations 4, 1015–1021.Google Scholar
Tsalyuk, Z.B. (1970), Asymptotic properties of solutions of the regeneration equation, Differential Equations 6, 1112–1114.Google Scholar
Tsalyuk, Z.B. (1979), Volterra integral equations, J. Soviet Math. 12, 715–758. [Survey paper: contains references to some 500 papers on Volterra equations reviewed in Referativnyi Zhurnal “Matematika” between 1966 and 1976.]Google Scholar
Tsalyuk, Z.B. (1989), Asymptotic estimates for the solutions of the renewal equation, Differential Equations 25, 239–243. [See also the related paper by Pulyaev and Tsalyuk (1991).]Google Scholar
Tuan, V.K. and R, Gorenflo (1994), Asymptotics of singular values of fractional integral operators, Inverse Problems 10, 949–955.Google Scholar
Tudor, C. (1986), On Volterra stochastic equations, Boll. Un. Mat. Ital. A (6) 5, 335–344.Google Scholar
Turo, J. (1995), Nonlinear stochastic functional integral equations in the plane, J. Appl. Math. Stochastic Anal. 8, 371–399.Google Scholar
Tychonoff, A. (1938), Sur les équations fonctionnelles de Volterra et leurs applications à certains problémes de la physique mathématique, Bull. Univ. d'État de Moscou Sér. Internat. Sér. A Math. Méchan. 1, 1–25. [Compare pp. 22–23 for the iterated kernels corresponding to weakly singular kernels with 0 ≷ α > 1.]Google Scholar
Unger, F. and L. v., Wolfersdorf (1995), Inverse Probleme zur Identifikation von Memory-Kernen, Freiberger Forschungsberichte Mathematik C458(Freiberg: Technische Universität Bergakademie).
Unterreiter, A. (1996), Volterra integral equation models for semiconductor devices, Math. Models Appl. Sci. 19, 425–450. [See pp. 448–449 for open numerical problems for VIEs arising in this model; compare also Schmeiser et al. (1993).]Google Scholar
Ursell, F. (1969), Integral equations with rapidly oscillating kernel, J. London Math. Soc. 44, 449–459.Google Scholar
Vainikko, G. (1993), Multidimensional Weakly Singular Integral Equations, Lecture Notes in Math. 1549 (Berlin: Springer-Verlag).
Vainikko, G. (2009), Cordial Volterra integral equations 1, Numer. Funct. Anal. Optim. 30, 1145–1172.Google Scholar
Vainikko, G. (2010a), Cordial Volterra integral equations 2, Numer. Funct. Anal. Optim. 31, 191–219.Google Scholar
Vainikko, G. (2010b), Spline collocation for cordial Volterra integral equations, Numer. Funct. Anal. Optim. 31, 313–338.Google Scholar
Vainikko, G. (2011), Spline collocation-interpolation method for linear and nonlinear cordial Volterra integral equations, Numer. Funct. Anal. Optim. 32, 83–109. [Contains also regularity results for solutions of nonlinear cordial VIEs.]Google Scholar
Vainikko, G. (2012), First kind cordial Volterra integral equations 1, Numer. Funct. Anal. Optim. 33, 680–704.Google Scholar
Vainikko, G. (2014), First kind cordial Volterra integral equations 2, Numer. Funct. Anal. Optim. 35, 1607–1637.Google Scholar
Vainikko, G. (2016), Private communication (26 February 2016).
Vasin, V.V. (1996), Monotone iterative processes for nonlinear operator equations and their applications to Volterra equations, J. Inv. Ill-Posed Problems 4, 331–340. [Newton-type iterative processes for nonlinear VIEs of the first kind.]Google Scholar
Väth, M. (1998a), Abstract Volterra equations of the second kind, J. Integral Equations Appl. 10, 319–362.Google Scholar
Väth, M. (1998b), Linear and nonlinear abstract Volterra equations, Funct. Differ. Equ. 5, 499–512.Google Scholar
Väth, M. (1999), Volterra and Integral Equations of Vector Functions (New York: Marcel Dekker). [Study of abstract Volterra equations via topological and algebraic methods.]
Vessella, S. (1985), Stability results for Abel equations, J. Integral Equations 9, 125– 134.Google Scholar
Vinokurov, V.R. (1969a), Certain questions in the theory of the stability of systems of Volterra integral equations I,II,III (in Russian), Izv. Vyssh. Uchebn. Zaved. Matematika 1969(no. 6(85)), 24–34; 1969 (no. 7(86)), 28–38; 1971(no. 4 (107)), 20–31.Google Scholar
Vinokurov, V.R. (1969b), Optimal control of processes described by integral equations I,II,III, SIAM J. Control 7, 324–336, 337–45, 346–355. [See also the comments by Neustadt & Warga (1970) on paper I.]Google Scholar
Vivanti, G. (1929), Elemente der Theorie der Linearen Integralgleichungen (Hannover: Helwingsche Verlagsbuchhandlung). [Features extensive annotated bibliography, including a list of dissertations.]
Vogel, Th. (1965), Théorie des Systèmes Évolutifs, Traité de Physique Théorique et de Physique Mathématique, XXII (Paris: Gauthier-Villars). [See also MR 32, #8546.]
Volterra, V. (1896a), Sulla inversione degli integrali definiti, Atti R. Accad. Sci. Torino 31, 311–323 (Nota I); 400–408 (Nota II).Google Scholar
Volterra, V. (1896b), Sulla inversione degli integrali definiti, Atti R. Accad. Sci. Torino 31, 557–567 (Nota III); 693–708 (Nota IV). [These four fundamental papers can also be found in Volterra (1954), Opere II, pp. 216–262.]Google Scholar
Volterra, V. (1896c), Sulla inversione degli integrali multipli, Rend. R. Accad. Lincei (5) 5, 289–300. [Systems of VIEs. See also Volterra (1954), Opere II, pp. 263–275.]Google Scholar
Volterra, V. (1897), Sopra alcune questioni di inversione di integrali definite, Ann. Mat. Pura Appl. (2) 25, 139–178.Google Scholar
Volterra, V. (1913), Leçons sur les Équations Intégrales et les Équations Integro- Différentielles (Paris: Gauthier-Villars; 2008 reprint: Sceaux: Éditions Jacques Gabay). [VIEs with proportional limits of integration are treated on pp. 92–101.]
Volterra, V. (1916), Teoria delle potenze dei logaritmi e delle funzione di composizione, Mem. Accad. Lincei Ser. 5 XI, 167–250; also in Volterra (1954), IV, pp. 118–199.Google Scholar
Volterra, V. (1954), Opere Matematiche, Vol. I–V (Rome: Accademia Nazionale dei Lincei, 1954, 1956, 1957, 1960, 1962).
Volterra, V. (1959), Theory of Functionals and of Integral and Integro-Differential Equations (New York: Dover Publications). [Based on lectures given at the University of Madrid in 1925 and first published in Spanish in 1927. An English translation with corrections appeared in 1930.]
Wagner, E. (1978), Über die Asymptotik der Lösungen linearer Volterrascher Integralgleichungen 2. Art vom Faltungstyp, Beiträge Anal. 11, 165–183. Walter,W. (1967), On nonlinear Volterra integral equations in several variables, J. Math. Mech. 16, 967–985.Google Scholar
Walther, H.-O. (2013), On Poisson's state-dependent delay, Discrete Contin. Dyn. Syst. 33, 365–379.Google Scholar
Waltman, P. (1974), Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomath. 1 (Berlin-Heidelberg: Springer-Verlag).
Wang, H.Y. and S.H., Xiang (2011), Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel, IMA J. Numer. Anal. 31, 469–490.Google Scholar
Webb, G.F. (1985), Theory of Nonlinear Age-Dependent Population Dynamics (New York: Marcel Dekker).
Whitley, R. (1987), The spectrum of a Volterra composition operator, Integral Equations Operator Theory 10, 146–149. [Compare also Lyubich (1984) and Domanov (2007, 2008).]Google Scholar
Willé, D.R. and C.T.H., Baker (1992), The tracking of derivative discontinuities in systems of delay-differential equations, Appl. Numer. Math. 9, 209–222.Google Scholar
Willé, D.R. and C.T.H., Baker (1994), Stepsize control and continuity consistency for state-dependent delay-differential equations, J. Comput. Appl. Math. 53, 163–170.Google Scholar
Wiman, A. (1905), Über die Nullstellen der Funktionen Eα(x), Acta Math., 29, 217–234.Google Scholar
Witte, G. (1997), Die analytische und die numerische Behandlung einer Klasse von Volterraschen Integralgleichungen im Hilbertraum, Dissertation (Berlin: Freie Universität Berlin).
v. Wolfersdorf, L. (1965), Abelsche Integralgleichungen und Randwertprobleme für die verallgemeinerte Tricomi-Gleichung, Math. Nachr. 25, 161–178.Google Scholar
v. Wolfersdorf, L. (1994), On identification of memory kernels in linear theory of heat conduction, Math. Methods Appl. Sci. 17, 919–932.Google Scholar
v. Wolfersdorf, L. (1995), A class of multi-dimensional nonlinear Volterra equations of convolution type, Demonstratio Math. 28, 807–820. [See in particular for first-kind VIEs associated with the Darboux problem.]Google Scholar
v. Wolfersdorf, L. (2000), Einige Klassen quadratischer Integralgleichungen, Sitzungsber. Sächs. Akad. Wiss. Leipzig Math.-Nat.wiss. Kl. 128, No. 2, 34pp. [Contains a comprehensive list of (114) references on the development of the theory of quadratic integral equations.]Google Scholar
v. Wolfersdorf, L. (2007), On the theory of convolution equations of the third kind, J. Math. Anal. Appl. 331, 1314–1336; Part II (with J. Janno): 342 (2008), 838–863.Google Scholar
v. Wolfersdorf, L. (2008), Autoconvolution equations and special functions, Integral Transforms Spec. Funct. 19, 677–686; Part II: 21 (2010), 295–306.Google Scholar
v. Wolfersdorf, L. (2011), Autoconvolution equations of the third kind with Abel integral, J. Integral Equations Appl. 23, 113–136. [See also Janno & von Wolfersdorf (2005) on a general class of third-kind auto-convolution equations.]Google Scholar
v. Wolfersdorf, L. and B, Hofmann (2008), A specific inverse problem for the Volterra convolution equation, Appl. Anal. 87, 59–81.Google Scholar
v. Wolfersdorf, L. and J, Janno (1995), On a class of nonlinear convolution equations, Z. Anal. Anwendungen 14, 497–508.Google Scholar
Wong, P.J.Y. and K.L., Boey (2004), Nontrivial periodic solutions in the modelling of infectious disease, Appl. Anal. 83, 1–16.Google Scholar
Wouk, A. (1964), Direct iteration, existence and uniqueness, in Anselone (1964), pp. 3–31. [Comprehensive survey of early nonlinear VIEs.]
Wu, Z.J. (2011), Volterra operator, area integral and Carleson measures, Science China Math. 54, 2487–2500.Google Scholar
Xiang, S.H. (2011), Efficient Filon-type methods for t 0 f (x)eiωg(x)dx, Numer. Math. 105, 633–658.Google Scholar
Xiang, S.H., Y.J., Cho, H.Y., Wang and H, Brunner (2011), Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications, IMA J. Numer. Anal. 31, 1281–1314.Google Scholar
Xiang, S.H. and H, Brunner (2013), Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels, BIT Numer. Math. 53, 241–263.Google Scholar
Xie, H.H., R., Zhang and H, Brunner (2011), Collocation methods for general Volterra functional integral equations with vanishing delays, SIAM J. Sci. Comput. 33, 3303–3332.Google Scholar
Yang, Z.W. (2015), Second-kind linear Volterra integral equations with noncompact operators, Numer. Funct. Anal. Optim. 36, 104–131.Google Scholar
Yang, Z.W. and H, Brunner (2013a), Blow-up behavior of Hammerstein-type delay Volterra integral equations, Front. Math. China 8, 261–280.Google Scholar
Yang, Z.W. and H, Brunner (2013b), Blow-up behavior of collocation solutions to Hammerstein-type Volterra integral equations, SIAM J. Numer. Anal., 51, 2260–2282.Google Scholar
Yang, Z.W. and H, Brunner (2014), Quenching behaviors of Volterra integral equations, Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal. 21, 507–529. [This paper contains an extensive list of references on theory and applications of quenching.]Google Scholar
Yatsenko, Yu. (1995), Volterra integral equations with unknown delay time, Methods Appl. Anal. 2, 408–419. [Compare also the monograph by Hritonenko & Yatsenko (1996) and its bibliography.]Google Scholar
Zhang, W.K. and H, Brunner (1999), Primary discontinuities for delay integrodifferential equations, Methods Appl. Anal. 6, 525–533.Google Scholar
Zhang, R., H., Liang and H, Brunner (2016), Analysis of collocation methods for generalized auto-convolution Volterra integral equations, SIAM J. Numer. Anal. 54, 899–920.Google Scholar
Zhang, X.C. (2010), Stochastic Volterra equations in Banach spaces and stochastic partial differential equations, J. Funct. Anal. 258, 1361–1425. [Contains extensive list of references on stochastic VIEs.]Google Scholar
Zhao, X.-Q. (2003), Dynamical Systems in Population Biology, CMS Books in Mathematics 16 (New York: Springer-Verlag).
Zima, M. (1992), A certain fixed point theorem and its applications to integralfunctional equations, Bull. Austral. Math. Soc. 46, 179–186.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hermann Brunner, Hong Kong Baptist University
  • Book: Volterra Integral Equations
  • Online publication: 02 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316162491.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hermann Brunner, Hong Kong Baptist University
  • Book: Volterra Integral Equations
  • Online publication: 02 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316162491.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hermann Brunner, Hong Kong Baptist University
  • Book: Volterra Integral Equations
  • Online publication: 02 February 2017
  • Chapter DOI: https://doi.org/10.1017/9781316162491.012
Available formats
×