Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:23:15.135Z Has data issue: false hasContentIssue false

8 - Carbon and Organic Matter on Ceres

from Part II - Key Results from Dawn’s Exploration of Vesta and Ceres

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Carbon, central to astrobiology, shaped the development of the dwarf planet Ceres, a water-rich protoplanet explored by NASA’s Dawn mission. As a candidate ocean world, Ceres has the potential to provide new insights into prebiotic chemistry and habitability. This chapter reviews observations of carbon and organic matter on Ceres by Dawn and Earth-based telescopes. The observations are placed in context with astrophysical processes that produced organic matter in nebular materials from which Ceres grew. We consider mechanisms for destruction and synthesis of organic matter with changing hydrothermal conditions within Ceres’ interior. This is supported by studies of Ceres’ closest meteorite analogs, the aqueously altered carbonaceous chondrites, and halite crystals containing organic matter that may have formed within Ceres. Ultraviolet-, infrared-, and nuclear-spectroscopy show that Ceres’ surface contains a mixture of carbonates and organic matter in concentrations higher than the meteorite analogs. Ceres carbon-rich surface results from a combination of impacts and complex processes that occurred within Ceres’ interior, including low-temperature aqueous alteration, ice-rock fractionation, and modification of the accreted carbon species during serpentinization. This chapter reviews the current state of knowledge about carbon on Ceres, including sources of carbon and organics, parent body processes, remote sensing observations, and their interpretation.

Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 121 - 133
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’d., Bowden, R., Fogel, M. L., et al. (2012) The provenances of asteroids, and their contributions to the volatile inventory of the terrestrial planets. Science, 337, 721723.CrossRefGoogle Scholar
Alexander, C. M. O’d., Bowden, R., Fogel, M. L., & Howard, K. T. (2015) Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810833.CrossRefGoogle Scholar
Alexander, C. M. O’d., Cody, G. D., Kebukawa, Y., et al. (2014) Elemental, isotopic, and structural changes in Tagish Lake insoluble organic matter produced by parent body processes. Meteoritics & Planetary Science, 49, 503525.Google Scholar
Anders, E., & Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.Google Scholar
Armitage, P. J. (2020) Astrophysics of Planet Formation. Cambridge: Cambridge University PressGoogle Scholar
Bally, J., O’Dell, C. R., & McCaughrean, M. J. (2000) Disks, microjets, windblown bubbles, and outflows in the Orion nebula. The Astronomical Journal, 119, 29192959.CrossRefGoogle Scholar
Beck, P., Eschrig, J., Potin, S., et al. (2021) “Water” abundance at the surface of C-complex main-belt asteroids. Icarus, 357, 114125.CrossRefGoogle Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. (2009) Why aqueous alteration in asteroids was isochemical: High porosity≠high permeability. Earth and Planetary Science Letters, 287, 559568.CrossRefGoogle Scholar
Bland, P. A., & Travis, B. J. (2017) Giant convecting mud balls of the early Solar System. Science Advances, 3, e1602514.Google Scholar
Bowling, T. J., Ciesla, F. J., Davison, T. M., et al. (2019) Post-impact thermal structure and cooling timescales of Occator crater on asteroid 1 Ceres. Icarus, 320, 110118.CrossRefGoogle Scholar
Bowling, T. J., Johnson, B. C., Marchi, S., et al. (2020) An endogenic origin of cerean organics. Earth and Planetary Science Letters, 534, 116069.CrossRefGoogle Scholar
Brandt, J. C. (2014) Physics and chemistry of comets. In Spohn, T., Breuer, D., & Johnson, T. (eds.), Encyclopedia of the Solar System, 3rd ed. Amsterdam: Elsevier, pp. 683703.Google Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.CrossRefGoogle Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711.CrossRefGoogle ScholarPubMed
Bu, C., Rodriguez Lopez, G., Dukes, C. A., et al. (2019) Stability of hydrated carbonates on Ceres. Icarus, 320, 136149.Google Scholar
Cami, J., Bernard-Salas, J., Peeters, E., & Malek, S. E. (2010) Detection of C60 and C70 in a young planetary nebula. Science, 329, 1180.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.CrossRefGoogle ScholarPubMed
Castillo-Rogez, J. C., & McCord, T. B. (2010) Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.CrossRefGoogle Scholar
Castillo-Rogez, J. C., Neveu, M., McSween, H. Y., et al. (2018) Insights into Ceres’s evolution from surface composition. Meteoritics & Planetary Science, 53, 18201843.Google Scholar
Castillo-Rogez, J. C., Neveu, M., Scully, J. E. C., et al. (2020) Ceres: Astrobiological target and possible ocean world. Astrobiology, 20, 269291.Google Scholar
Chan, Q. H. S., Zolensky, M. E., Bodnar, R. J., Farley, C., & Cheung, J. C. H. (2017) Investigation of organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy. Geochimica et Cosmochimica Acta, 201, 392409.CrossRefGoogle Scholar
Chan, Q. H. S., Zolensky, M. E., Kebukawa, Y., et al. (2018) Organic matter in extraterrestrial water-bearing salt crystals. Science Advances, 4, eaao3521.Google Scholar
Charnley, S. B. (1994) Chemistry of star‐forming cores. AIP Conference Proceedings, 312, 155159.CrossRefGoogle Scholar
Cronin, J. R., & Chang, S. (1993) Organic matter in meteorites: Molecular and isotopic analyses of the Murchison meteorite. In Greenberg, J. M., Mendoza-Gómez, C. X., & Pirronello, V. (eds.), The Chemistry of Life’s Origins Dordrecht: Springer Netherlands, pp. 209258.Google Scholar
Daly, R. T., & Schultz, P. H. (2015) Predictions for impactor contamination on Ceres based on hypervelocity impact experiments. Geophysical Research Letters, 42, 78907898.CrossRefGoogle Scholar
De Leuw, S., Rubin, A. E., & Wasson, J. T. (2010) Carbonates in CM chondrites: Complex formational histories and comparison to carbonates in CI chondrites. Meteoritics & Planetary Science, 45, 513530.CrossRefGoogle Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2020) Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids. Nature Astronomy, 4, 786793.Google Scholar
De Sanctis, M. C., Coradini, A., Ammannito, E., et al. (2011) The VIR spectrometer. Space Science Reviews, 163, 329369.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
De Sanctis, M. C., Vinogradoff, V., Raponi, A., et al. (2018) Characteristics of organic matter on Ceres from VIR/Dawn high spatial resolution spectra. Monthly Notices of the Royal Astronomical Society, 482, 24072421.Google Scholar
Duprat, J., Dobrică, E., Engrand, C., et al. (2010) Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science, 328, 742.Google Scholar
Ehrenfreund, P., & Charnley, S. B. (2000) Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annual Review of Astronomy and Astrophysics, 38, 427483.CrossRefGoogle Scholar
Endreß, M., & Bischoff, A. (1996) Carbonates in CI chondrites: Clues to parent body evolution. Geochimica et Cosmochimica Acta, 60, 489507.CrossRefGoogle ScholarPubMed
Ermakov, A. I., Fu, R. R., Castillo-Rogez, J. C., et al. (2017) Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. Journal of Geophysical Research: Planets, 122, 22672293.Google Scholar
Flynn, G. J., Keller, L. P., Feser, M., Wirick, S., & Jacobsen, C. (2003) The origin of organic matter in the Solar System: evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta, 67, 47914806.Google Scholar
Fomenkova, M. N., Chang, S., & Mukhin, L. M. (1994) Carbonaceous components in the comet Halley dust. Geochimica et Cosmochimica Acta, 58, 45034512.Google Scholar
Fray, N., Bardyn, A., Cottin, H., et al. (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature, 538, 7274.Google Scholar
Fu, R. R., Ermakov, A. I., Marchi, S., et al. (2017) The interior structure of Ceres as revealed by surface topography. Earth and Planetary Science Letters, 476, 153164.CrossRefGoogle Scholar
Garvie, L. A. J., & Buseck, P. R. (2007) Prebiotic carbon in clays from Orgueil and Ivuna (CI), and Tagish Lake (C2 ungrouped) meteorites. Meteoritics & Planetary Science, 42, 21112117.Google Scholar
Grimm, R. E., & McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653.CrossRefGoogle Scholar
Hasegawa, T. I., Herbst, E., & Leung, C. M. (1992) Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. The Astrophysical Journal Supplement Series, 82, 167195.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016a) Ceres: Sulfur deposits and graphitized carbon. Geophysical Research Letters, 43, 89208927.Google Scholar
Hendrix, A. R., Vilas, F., & Li, J.-Y. (2016b) The UV signature of carbon in the Solar System. Meteoritics & Planetary Science, 51, 105115.CrossRefGoogle Scholar
Holm, N. G., Oze, C., Mousis, O., Waite, J. H., & Guilbert-Lepoutre, A. (2015) Serpentinization and the formation of H2 and CH4 on celestial bodies (planets, moons, comets). Astrobiology, 15, 587600.Google Scholar
Jessberger, E. K., Christoforidis, A., & Kissel, J. (1988) Aspects of the major element composition of Halley’s dust. Nature, 332, 691695.Google Scholar
Kaplan, H. H., & Milliken, R. E. (2016) Reflectance spectroscopy for organic detection and quantification in clay-bearing samples: Effects of albedo, clay type, and water content. Clays and Clay Minerals, 64, 167184.CrossRefGoogle Scholar
Kaplan, H. H., Milliken, R. E., & Alexander, C. M. O. D. (2018) New constraints on the abundance and composition of organic matter on Ceres. Geophysical Research Letters, 45, 52745282.CrossRefGoogle Scholar
Kaplan, H. H., Milliken, R. E., Alexander, C. M. O. D., & Herd, C. D. K. (2019) Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites. Meteoritics & Planetary Science, 54, 10511068.Google Scholar
Kebukawa, Y., Ito, M., Zolensky, M. E., et al. (2019) A novel organic-rich meteoritic clast from the outer Solar System. Scientific Reports, 9, 3169.CrossRefGoogle ScholarPubMed
Kretke, K. A., Bottke, W. F., Levinson, H. F., & Kring, D. A. (2017) Mixing of the asteroid belt due to the formation of the giant planets. Accrection: Building New Worlds, LPI Topical Conference, August 15–18, Lunar and Planetary Institute, Houston, TX, #2027.Google Scholar
Kurokawa, H., Ehlmann, B. L., De Sanctis, M. C., et al. (2020) A probabilistic approach to determination of Ceres’ average surface composition from Dawn VIR and GRaND data. Journal of Geophysical Research: Planets, n/a, e2020JE006606.Google Scholar
Le Guillou, C., Bernard, S., Brearley, A. J., & Remusat, L. (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ investigations. Geochimica et Cosmochimica Acta, 131, 368392.CrossRefGoogle Scholar
Lodders, K., & Fegley, B. Jr. (1998) The Planetary Scientist’s Companion. Oxford: Oxford University Press on Demand.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2017) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Nuth, J. A., Johnson, N. M., & Manning, S. (2008) A self-perpetuating catalyst for the production of complex organic molecules in protostellar nebulae. Proceedings of the International Astronomical Union, 4, 403408.CrossRefGoogle Scholar
Pieters, C. M., Nathues, A., Thangjam, G., et al. (2018) Geologic constraints on the origin of red organic-rich material on Ceres. Meteoritics & Planetary Science, 53, 19831998.Google Scholar
Pizzarello, S., Davidowski, S. K., Holland, G. P., & Williams, L. B. (2013) Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments. Proceedings of the National Academy of Sciences (USA), 110, 15614.Google Scholar
Prettyman, T. H., Englert, P. A. J., & Yamashita, N. (2019a) Neutron, gamma-ray, and X-ray spectroscopy: Theory and applications. In Bishop, J. L., Bell, J. F., & Moersch, J.E. (eds.), Remote Compositional Analysis. Cambridge: Cambridge University Press, pp. 191238.Google Scholar
Prettyman, T. H., Feldman, W. C., McSween, H. Y. Jr., et al. (2011) Dawn’s gamma ray and neutron detector. Space Science Reviews, 163, 371459.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242246.CrossRefGoogle Scholar
Prettyman, T. H., Yamashita, N., Ammannito, E., et al. (2019b) Elemental composition and mineralogy of Vesta and Ceres: Distribution and origins of hydrogen-bearing species. Icarus, 318, 4255.Google Scholar
Prettyman, T. H., Yamashita, N., & McSween, H. Y. (2018) Carbon on Ceres: Implications for origins and interior evolution. 49th Lunar and Planetary Science Conference, March 19–23, The Woodlands, TX, #1151.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quick, L. C., Buczkowski, D. L., Ruesch, O., et al. (2019) A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus, 320, 119135.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2019) Mineralogy of Occator crater on Ceres and insight into its evolution from the properties of carbonates, phyllosilicates, and chlorides. Icarus, 320, 8396.Google Scholar
Raponi, A., De Sanctis, M. C., Carrozzo, F. G., et al. (2021) Organic material on Ceres: Insights from visible and infrared space observations. Life, 11, 9.CrossRefGoogle Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Raymond, S. N., & Izidoro, A. (2017) Origin of water in the inner solar system: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus, 297, 134148.Google Scholar
Riebe, M. E. I., Foustoukos, D. I., Alexander, C. M. O. D., et al. (2020) The effects of atmospheric entry heating on organic matter in interplanetary dust particles and micrometeorites. Earth and Planetary Science Letters, 540, 116266.Google Scholar
Rivkin, A. S., Volquardsen, E. L., & Clark, B. E. (2006) The surface composition of Ceres: Discovery of carbonates and iron-rich clays. Icarus, 185, 563567.Google Scholar
Rubin, A. E., Zolensky, M. E., & Bodnar, R. J. (2002) The halite-bearing Zag and Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism and aqueous alteration on the H-chondrite parent body. Meteoritics & Planetary Science, 37, 125141.Google Scholar
Ruesch, O., Genova, A., Neumann, W., et al. (2019) Slurry extrusion on Ceres from a convective mud-bearing mantle. Nature Geoscience, 12, 505509.Google Scholar
Ruesch, O., Platz, T., Schenk, P., et al. (2016) Cryovolcanism on Ceres. Science, 353, aaf4286.Google Scholar
Sahijpal, S., Goswami, J. N., Davis, A. M., Grossman, L., & Lewis, R. S. (1998) A stellar origin for the short-lived nuclides in the early solar system. Nature, 391, 559561.Google Scholar
Schulte, M., & Shock, E. (2004) Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteoritics & Planetary Science, 39, 15771590.Google Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. The Astrophysical Journal, 854, 164.Google Scholar
Scully, J. E. C., Schenk, P. M., Castillo-Rogez, J. C., et al. (2020) The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 11, 3680.Google Scholar
Sephton, M. A. (2002) Organic compounds in carbonaceous meteorites. Natural Product Reports, 19, 292311.Google Scholar
Sierks, H., Keller, H. U., Jaumann, R., et al. (2011) The Dawn Framing Camera. Space Science Reviews, 163, 263327.Google Scholar
Thomas, K. L., Blanford, G. E., Keller, L. P., Klöck, W., & McKay, D. S. (1993) Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta, 57, 15511566.Google Scholar
Travis, B. J., Bland, P. A., Feldman, W. C., & Sykes, M. V. (2018) Hydrothermal dynamics in a CM-based model of Ceres. Meteoritics & Planetary Science, 53, 20082032.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Weisberg, M. K., McCoy, T. J., & Krot, A. N. (2006) Systematics and evaluation of meteorite classification. In Lauretta, D. S., & McSween, H. Y. Jr. (eds.), Meteorites and the Early Solar System II. Tucson: University of Arizona Press, pp. 1952.Google Scholar
Zolensky, M. E., Mittlefehldt, D. W., Lipschutz, M. E., et al. (1997) CM chondrites exhibit the complete petrologic range from type 2 to 1. Geochimica et Cosmochimica Acta, 61, 50995115.Google Scholar
Zolotov, M. Y. (2017) Aqueous origins of bright salt deposits on Ceres. Icarus, 296, 289304.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×