Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T13:50:42.301Z Has data issue: false hasContentIssue false

9 - Neuroimaging in velo-cardio-facial syndrome

Published online by Cambridge University Press:  11 August 2009

Stephan Eliez
Affiliation:
Division of Child and Adolescent Psychiatry, Geneva University School of Medicine, Switzerland
Therese van Amelsvoort
Affiliation:
Department of Psychiatry, Academic Medical Centre, Amsterdam, Holland
Kieran C. Murphy
Affiliation:
Education and Research Centre, Royal College of Surgeons of Ireland
Peter J. Scambler
Affiliation:
Institute of Child Health, University College London
Get access

Summary

Introduction

An increase in the number of publications reporting on the neuropsychiatric aspects of VCFS has been observed over the past 5 years and this is likely attributable to data suggesting that VCFS may represent a homogenous genetic subtype of schizophrenia (Bassett & Chow, 1999). The understanding of brain function and development, similar to investigating other neurogenetic or psychiatric conditions, is a necessary step for our comprehension of the cognitive, behavioral, and psychiatric phenotypes associated with VCFS (see Chapters 7 and 8). In this chapter we will discuss the currently available neuroimaging literature in people with VCFS, and how this contributes to our understanding of the neurobiology of schizophrenia in the general population.

Qualitative MRI studies in VCFS

Early neuroimaging reports emphasized qualitative differences in brain structures associated with VCFS (Mitnick et al., 1994). In addition to overall brain and cortical atrophy, a high prevalence of midline defects like small corpus callosum, cavum septum pellucidum or cavum vergae, enlarged ventricles, cysts adjacent to the frontal horns of the ventricles, small posterior fossa and vermal atrophy, and white matter hyperintensities (WMHIs) have been described (Mitnick et al., 1994; Lynch et al., 1995; Vataja & Elomaa, 1998; Chow et al., 1999; van Amelsvoort et al. 2001). However, these brain abnormalities are also observed in non-VCFS schizophrenia or other people with a learning disability, and their clinical significance is not known (Schaefer & Bodensteiner, 1999; Rivkin et al., 2000; van Amelsvoort et al., 2001; Rajarethinam et al., 2001).

Type
Chapter
Information
Velo-Cardio-Facial Syndrome
A Model for Understanding Microdeletion Disorders
, pp. 165 - 180
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C., Paradiso, S. & O'Leary, D. S. (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull., 24 (2), 203–18.Google Scholar
Barnea-Goraly, N., Menon, V., Krasnow, B.et al. (2003) Investigation of white matter structure in velocardiofacial syndrome: a diffusion tensor imaging study. Am. J. Psychiatry, 160 (10), 1863–9.CrossRefGoogle Scholar
Bassett, A. S. & Chow, E. W. (1999) 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol. Psychiatry, 46 (7), 882–91.CrossRefGoogle Scholar
Bingham, P. M., Lynch, D., McDonald-McGinn, D.et al. (1998) Polymicrogyria in chromosome 22 delection syndrome. Neurology, 51 (5), 1500–2.CrossRefGoogle Scholar
Bird, L. M. & Scambler, P. (2000) Cortical dysgenesis in 2 patients with chromosome 22q11 deletion. Clin. Genet., 58 (1), 64–8.CrossRefGoogle Scholar
Cabelli, R. J., Hohn, A. & Shatz, C. J. (1995) Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science, 267 (5204), 1662–6.Google Scholar
Cannon, M., Caspi, A., Moffitt, T. E.et al. (2002) Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch. Gen. Psychiatry, 59 (5), 449–56.CrossRefGoogle Scholar
Chow, E. W., Mikulis, D. J., Zipursky, R. B.et al. (1999) Qualitative MRI findings in adults with 22q11 deletion syndrome and schizophrenia. Biol. Psychiatry, 46 (10), 1436–42.CrossRefGoogle Scholar
Chow, E. W., Zipursky, R. B., Mikulis, D. J.et al. (2002) Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome. Biol. Psychiatry, 51 (3), 208–15.CrossRefGoogle Scholar
Cohen, I. L., Fisch, G. S., Sudhalter, V.et al. (1988) Social gaze, social avoidance, and repetitive behavior in fragile X males: a controlled study. Am. J. Ment. Retard, 92 (5), 436–46.Google Scholar
Cohen, I. L., Vietze, P. M., Sudhalter, V.et al. (1991) Effects of age and communication level on eye contact in fragile X males and non-fragile X autistic males. Am. J. Med. Genet., 38 (2–3), 498–502.CrossRefGoogle Scholar
Devriendt, K., Thienen, M. N., Swillen, A.et al. (1996) Cerebellar hypoplasia in a patient with velo-cardio-facial syndrome. Dev. Med. Child Neurol., 38 (10), 949–53.CrossRefGoogle Scholar
Eliez, S., Schmitt, J. E., White, C. D.et al. (2000) Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am. J. Psychiatry, 157 (3), 409–15.CrossRefGoogle Scholar
Eliez, S., Antonarakis, S. E., Morris, M. A.et al. (2001a) Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. Arch. Gen. Psychiatry, 58 (1), 64–8.Google Scholar
Eliez, S., Blasey, C. M., Menon, V.et al. (2001b) Functional brain imaging study of mathematical reasoning abilities in velocardiofacial syndrome (del22q11.2). Genet. Med., 3 (1), 49–55.Google Scholar
Eliez, S., Blasey, C. M., Schmitt, E. J.et al. (2001c) Velocardiofacial syndrome: are structural changes in the temporal and mesial temporal regions related to schizophrenia? Am. J. Psychiatry, 158 (3), 447–53.Google Scholar
Eliez, S., Schmitt, J. E., White, C. D.et al. (2001d) A quantitative MRI study of posterior fossa development in velocardiofacial syndrome. Biol. Psychiatry, 49 (6), 540–6.Google Scholar
Feinberg, I. & Guazzelli, M. (1999) Schizophrenia – a disorder of the corollary discharge systems that integrate the motor systems of thought with the sensory systems of consciousness. Br. J. Psychiatry, 174, 196–204.CrossRefGoogle Scholar
Filley, M. C. (2001) The Behavioral Neurology of White Matter. Oxford: Oxford University Press.
Ford, J. M., Mathalon, D. H., Whitfield, S.et al. (2002) Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry, 51 (6), 485–92.CrossRefGoogle Scholar
Friston, K. J. & Frith, C. D. (1995) Schizophrenia: a disconnection syndrome? Clin. Neurosci., 3 (2), 89–97.Google Scholar
Fuller, R., Nopoulos, P., Arndt, S.et al. (2002) Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. Am. J. Psychiatry, 159 (7), 1183–9.CrossRefGoogle Scholar
Gerdes, M., Solot, C., Wang, P. P.et al. (1999) Cognitive and behavior profile of preschool children with chromosome 22q11.2 deletion. Am. J. Med. Genet., 85 (2), 127–33.3.0.CO;2-F>CrossRefGoogle Scholar
Ghariani, S., Dahan, K., Saint-Martin, C.et al. (2002) Polymicrogyria in chromosome 22q11 deletion syndrome. Eur. J. Paediatr. Neurol., 6 (1), 73–7.CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O.et al. (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci., 2 (10), 861–3.CrossRefGoogle Scholar
Gold, S., Arndt, S., Nopoulos, P.et al. (1999) Longitudinal study of cognitive function in first-episode and recent-onset schizophrenia. Am. J. Psychiatry, 156 (9), 1342–8.Google Scholar
Goldberg, R., Motzkin, B., Marion, R.et al. (1993) Velo-cardio-facial syndrome: a review of 120 patients. Am. J. Med. Genet., 45 (3), 313–19.CrossRefGoogle Scholar
Golding-Kushner, K. J., Weller, G. & Shprintzen, R. J. (1985) Velo-cardio-facial syndrome: language and psychological profiles. J. Craniofac. Genet. Dev. Biol., 5 (3), 259–66.Google Scholar
Greally, J. M. & State, M. W. (2000) Genetics of childhood disorders: XIII. Genomic imprinting: the indelible mark of the gamete. J. Am. Acad. Child, Adolesc. Psychiatry, 39 (4), 532–5.Google Scholar
Grishkat, H. L. & Eisenman, L. M. (1995) Development of the spinocerebellar projection in the prenatal mouse. J. Comp. Neurol., 363 (1), 93–108.CrossRefGoogle Scholar
Guerreiro, M. M., Camargo, E. E., Kato, M.et al. (1998) Fragile X syndrome. Clinical, electroencephalographic and neuroimaging characteristics. Arq. Neuropsiquiatr., 56 (1), 18–23.Google Scholar
Guerrini, R., Barkovich, A. J., Sztriha, L.et al. (2000) Bilateral frontal polymicrogyria: a newly recognized brain malformation syndrome. Neurology, 54 (4), 909–13.CrossRefGoogle Scholar
Gur, R. E., Turetsky, B. I., Bilker, W. B.et al. (1999) Reduced gray matter volume in schizophrenia. Arch. Gen. Psychiatry, 56 (10), 905–11.CrossRefGoogle Scholar
Hallonet, M. E., Teillet, M. A. & Douarin, N. M. (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development, 108 (1), 19–31.Google Scholar
Henry, J. C., Amelsvoort, T., Morris, R. G.et al. (2002) An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia, 40 (5), 471–8.CrossRef
Holroyd, S., Reiss, A. L. & Bryan, R. N. (1991) Autistic features in Joubert syndrome: a genetic disorder with agenesis of the cerebellar vermis. Biol. Psychiatry, 29 (3), 287–94.CrossRefGoogle Scholar
Ichimiya, T., Okubo, Y., Suhara, T.et al. (2001) Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol. Psychiatry, 49 (1), 20–7.CrossRefGoogle Scholar
Jacobsen, L. K., Giedd, J. N., Vaituzis, A. C.et al. (1996) Temporal lobe morphology in childhood-onset schizophrenia. Am. J. Psychiatry, 153 (3), 355–61.Google Scholar
Jacobsen, L. K., Giedd, J. N., Castellanos, F. X.et al. (1998) Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am. J. Psychiatry, 155 (5), 678–85.CrossRefGoogle Scholar
Kates, W. R., Burnette, C. P., Jabs, E. W.et al. (2001) Regional cortical white matter reductions in velocardiofacial syndrome: a volumetric MRI analysis. Biol. Psychiatry, 49 (8), 677–84.CrossRefGoogle Scholar
Kawame, H., Kurosawa, K., Akatsuka, A.et al. (2000) Polymicrogyria is an uncommon manifestation in 22q11.2 deletion syndrome. Am. J. Med. Genet., 94 (1), 77–8.3.0.CO;2-V>CrossRefGoogle Scholar
Kok, L. L. & Solman, R. T. (1995) Velocardiofacial syndrome: learning difficulties and intervention. J. Med. Genet., 32 (8), 612–18.CrossRefGoogle Scholar
Kubicki, M., Westin, C. F., Maier, S. E.et al. (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am. J. Psychiatry, 159 (5), 813–20.CrossRefGoogle Scholar
Lenhoff, H. M., Wang, P. P., Greenberg, F.et al. (1997) Williams syndrome and the brain. Sci. Am., 277 (6), 68–73.CrossRefGoogle Scholar
LeVay, S., Stryker, M. P. & Shatz, C. J. (1978) Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol., 179 (1), 223–44.CrossRefGoogle Scholar
Lim, K. O., Hedehus, M., Moseley, M.et al. (1999) Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry, 56 (4), 367–74.CrossRefGoogle Scholar
Lynch, D. R., McDonald-McGinn, D. M., Zackai, E. H.et al. (1995) Cerebellar atrophy in a patient with velocardiofacial syndrome. J. Med. Genet., 32 (7), 561–3.CrossRefGoogle Scholar
Martinez, S. & Alvarado-Mallart, R. (1989) Rostral cerebellum originates from the caudal portion of the so-called ‘mesencephalic’ vesicle: a study using chick/quail chimeras. Eur. J. Neurosci., 1, 549–60.CrossRefGoogle Scholar
McGlashan, T. H. & Hoffman, R. E. (2000) Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry, 57 (7), 637–48.CrossRefGoogle Scholar
Merscher, S., Funke, B., Epstein, J. A.et al. (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell, 104 (4), 619–29.CrossRefGoogle Scholar
Millet, S., Bloch-Gallego, E., Simeone, A.et al. (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development, 122 (12), 3785–97.Google Scholar
Mitnick, R. J., Bello, J. A. & Shprintzen, R. J. (1994) Brain anomalies in velo-cardio-facial syndrome. Am. J. Med. Genet., 54 (2), 100–6.CrossRefGoogle Scholar
Mohamed, S., Paulsen, J. S., O'Leary, D.et al. (1999) Generalized cognitive deficits in schizophrenia: a study of first-episode patients. Arch. Gen. Psychiatry, 56 (8), 749–54.CrossRefGoogle Scholar
Moore, K. L. & Persaud, T. V. N. (1993) The Developing Human: Clinically Oriented Embryology. Philadelphia, PA: WB Saunders Company.
Mostofsky, S. H., Mazzocco, M. M., Aakalu, G.et al. (1998) Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology, 50 (1), 121–30.CrossRefGoogle Scholar
Nicolson, R. & Rapoport, J. L. (2000). Childhood-onset schizophrenia: what can it teach us? In Rapoport, J. L., ed., Childhood Onset of “Adult” Psychopathology. Washington, DC: American Psychiatric Press, pp. 167–92.
Nopoulos, P. C., Ceilley, J. W., Gailis, E. A.et al. (1999) An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol. Psychiatry, 46 (5), 703–11.CrossRefGoogle Scholar
Prows, C. A. & Hopkin, R. J. (1999) Prader Willi and Angelman syndromes: exemplars of genomic imprinting. J. Perinat. Neonatal. Nurs., 13 (2), 76–89.CrossRefGoogle Scholar
Rajarethinam, R., Miedler, J., DeQuardo, J.et al. (2001) Prevalence of cavum septum pellucidum in schizophrenia studied with MRI. Schizophr. Res., 48 (2–3), 201–5.CrossRefGoogle Scholar
Reiss, A. L., Faruque, F., Naidu, S.et al. (1993) Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann. Neurol., 34 (2), 227–34.CrossRefGoogle Scholar
Reiss, A. L., Abrams, M. T., Singer, H. S.et al. (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119 (Pt 5), 1763–74.CrossRefGoogle Scholar
Reiss, A. L., Eliez, S., Schmitt, J. E.et al. (2000) IV. Neuroanatomy of Williams syndrome: a high-resolution MRI study. J. Cogn. Neurosci., 12 Suppl. 1, 65–73.Google Scholar
Rivkin, P., Kraut, M., Barta, P.et al. (2000) White matter hyperintensity volume in late-onset and early-onset schizophrenia. Int. J. Geriatr. Psychiatry, 15 (12), 1085–9.3.0.CO;2-X>CrossRefGoogle Scholar
Rowitch, D. H., Danielian, P. S., McMahon, A. P.et al. (1999) Cystic malformation of the posterior cerebellar vermis in transgenic mice that ectopically express Engrailed-1, a homeodomain transcription factor. Teratology, 60 (1), 22–8.3.0.CO;2-6>CrossRefGoogle Scholar
Rugg, M. D., Mark, R. E., Walla, P.et al. (1998) Dissociation of the neural correlates of implicit and explicit memory. Nature, 392 (6676), 595–8.Google Scholar
Ryan, A. K., Goodship, J. A., Wilson, D. I.et al. (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J. Med. Genet., 34 (10), 798–804.CrossRefGoogle Scholar
Schaefer, G. B. & Bodensteiner, J. B. (1999) Developmental anomalies of the brain in mental retardation. Int. Rev. Psychiatry, 11, 47–55.Google Scholar
Schmahmann, J. D. & Pandya, D. N. (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J. Comp. Neurol., 308 (2), 224–48.CrossRefGoogle Scholar
Schmitt, J. E., Eliez, S., Warsofsky, I. S.et al. (2001) Enlarged cerebellar vermis in Williams syndrome. J. Psychiatr. Res., 35 (4), 225–9.CrossRefGoogle Scholar
Shadmehr, R. & Holcomb, H. H. (1997) Neural correlates of motor memory consolidation. Science, 277 (5327), 821–5.Google Scholar
Shallice, T., Fletcher, P., Frith, C. D.et al. (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368 (6472), 633–5.Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M.et al. (2001) A review of MRI findings in schizophrenia. Schizophr. Res., 49 (1–2), 1–52.CrossRefGoogle Scholar
Shprintzen, R. J., Morrow, B. & Kucherlapati, R. (1997) Vascular anomalies may explain many of the features in velo-cardio-facial syndrome. Am. J. Hum. Gene, 61, A5.Google Scholar
Sigmundsson, T., Suckling, J., Maier, M.et al. (2001) Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am. J. Psychiatry, 158 (2), 234–43.CrossRefGoogle Scholar
Sowell, E. R., Thompson, P. M., Holmes, C. J.et al. (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat. Neurosci., 2 (10), 859–61.CrossRefGoogle Scholar
Swillen, A., Devriendt, K., Legius, E.et al. (1997) Intelligence and psychosocial adjustment in velocardiofacial syndrome: a study of 37 children and adolescents with VCFS. J. Med. Genet., 34 (6), 453–8.CrossRefGoogle Scholar
Swillen, A., Devriendt, K., Legius, E.et al. (1999) The behavioural phenotype in velo-cardio-facial syndrome (VCFS): from infancy to adolescence. Genet. Couns., 10 (1), 79–88.Google Scholar
Taylor, W. D., Payne, M. E., Krishnan, K. R.et al. (2001) Evidence of white matter tract disruption in MRI hyperintensities. Biol. Psychiatry, 50 (3), 179–83.CrossRefGoogle Scholar
Thompson, P. M., Vidal, C., Giedd, J. N.et al. (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc. Natl. Acad. Sci. USA, 98 (20), 11650–5.CrossRefGoogle Scholar
Ungerleider, L. G. (1995) Functional brain imaging studies of cortical mechanisms for memory. Science, 270 (5237), 769–75CrossRefGoogle Scholar
Amelsvoort, T., Daly, E., Robertson, D.et al. (2001) Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br. J. Psychiatry, 178, 412–19.Google Scholar
van Amelsvoort, T., Daly, E., Henry, J., et al. (2004) Brain anatomy in adults with velo-cardio-facial syndrome with and without schizophrenia: preliminary results of a structural magnetic resonance imaging study. Arch. Gen. Psych., (in press)
Vataja, R. & Elomaa, E. (1998) Midline brain anomalies and schizophrenia in people with CATCH 22 syndrome. Br. J. Psychiatry, 172, 518–20.Google Scholar
Worthington, S., Turner, A., Elber, J.et al. (2000) 22q11 deletion and polymicrogyria: cause or coincidence?Clin. Dysmorphol., 9 (3), 193–7.CrossRefGoogle Scholar
Yachnis, A. T. & Rorke, L. B. (1999) Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J. Child. Neurol., 14, 570–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×