Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T15:26:35.409Z Has data issue: false hasContentIssue false

8 - Statistical Inference

Published online by Cambridge University Press:  07 December 2009

Henry E. Kyburg, Jr
Affiliation:
University of Rochester, New York
Choh Man Teng
Affiliation:
Institute for Human and Machine Intelligence
Get access

Summary

Introduction

We consider a group of puppies, take what we know about that group as a premise, and infer, as a conclusion, something about the population of all puppies. Such an inference is clearly risky and invalid. It is nevertheless the sort of inference we must make and do make. Some such inferences are more cogent, more rational than others. Our business as logicians is to find standards that will sort them out.

Statistical inference includes inference from a sample to the population from which it comes. The population may be actual, as it is in public opinion polls, or hypothetical, as it is in testing an oddly weighted die (the population is then taken to be the hypothetical, population of possible tosses or possible sequences of tosses of the die). Statistical inference is a paradigm example of uncertain inference.

Statistical inference is also often taken to include the uncertain inference we make from a population to a sample, as when we infer from the fairness of a coin that roughly half of the next thousand coin tosses we make will yield heads–a conclusion that might be false. Note that this is not probabilistic inference: the inference from the same premises to the conclusion that the probability is high that roughly half of the next thousand tosses will yield heads is deductive and (given the premises) not uncertain at all.

The inference from a statistical premise about a population to a nonprobabilistic conclusion about part of that population is called direct inference. The inference from a premise about part of a population to the properties of the population as a whole is called inverse inference.

Type
Chapter
Information
Uncertain Inference , pp. 175 - 199
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×