Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T16:56:05.646Z Has data issue: false hasContentIssue false

5 - Tunable Liquid Lenses

from Part II - Devices and materials

Published online by Cambridge University Press:  05 December 2015

J. Andrew Yeh
Affiliation:
National Tsing Hua University, Taiwan
Yen-Sheng Lu
Affiliation:
National Tsing Hua University, Taiwan
Hans Zappe
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Claudia Duppé
Affiliation:
Albert-Ludwigs-Universität Freiburg, Germany
Get access

Summary

Introduction

Microlenses are used in many applications including optical coupling, light shaping, spatial light illumination modulation, and imaging (biomedical or monitoring). The basic function of a lens is to either diverge or converge the incident light beams. Solid lenses are the most widely used and have a fixed and nontunable focal length. In a solid lens module, voice coil motors (VCMs) are used to provide a back-and-forth track movement along the optical axis to achieve the required focal length change. However, the bulkiness and high power consumption of the lens module make it unsuitable for designing portable and energy saving products. The focal length of liquid lenses can be tuned by changing either the refractive index or the liquid lens geometry. As liquid lenses do not need any mechanical tracking devices such as VCMs for focal length tuning, the lenses provide the optimal solution for developing miniaturized lens modules with low power consumption in the mW range.

In the past two decades, liquid lenses have been widely investigated benefitting from the development of microfluidics (Berge & Peseux 2000, Chang et al. 2012, Chen et al. 2004). In microfluidics, the control or guidance of liquid/analyst droplets is very significant; especially for lab-on-a-chip (LOC) or micro-total analysis systems (μTAS). LOCs are devices that integrate one or several laboratory functions on a small chip of only few square millimeters to a few square centimeters in size, where the manipulation and the guidance of the tiny amounts of liquids or droplets becomes more and more significant. Certain liquid control mechanisms, such as external pressure pumping, electrowetting, and dielectrophoresis, have been developed and widely used for liquid manipulation (Agarwal et al. 2004, Berge & Peseux 2000, Cheng & Yeh 2007). The technique developed for the manipulation of liquids in microfluidics can be used to change the surface profile and the refractive indices of liquid lenses.

A liquid lens refracts the incident light beams based on the presence of the gradient index in liquids or the change in surface profiles formed from the solid (membrane)–liquid, liquid–liquid, and gas–liquid interfaces. The working liquids in the lens chamber must be transparent in the visible range and should be stable for a wide temperature range. To achieve these goals, liquid crystals, water, mixed alcohols, or silicone oil have been used and investigated.

Type
Chapter
Information
Tunable Micro-optics , pp. 123 - 155
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, M., Gunasekaran, R., Coane, P. & Varahramyan, K. (2004), ‘Polymer-based variable focal length microlens system’, Journal of Micromechanics and Microengineering 14(12), 1665.CrossRefGoogle Scholar
Ahn, S.-H. & Kim, Y.-K. (1999), ‘Proposal of human eye's crystalline lens-like variable focusing lens’, Sensors and Actuators A: Physical 78(1), 48–53.CrossRefGoogle Scholar
An, J. Y., Hur, J. H., Kim, S. & Lee, J. H. (2011), ‘Spherically encapsulated variable liquid lens on coplanar electrodes’, Photonics Technology Letters, IEEE 23(22), 1703–1705.CrossRefGoogle Scholar
Berge, B. & Peseux, J. (2000), ‘Variable focal lens controlled by an external voltage: An application of electrowetting’, The European Physical Journal E 3(2), 159–163.CrossRefGoogle Scholar
Chang, J.-H., Jung, K.-D., Lee, E., Choi, M., Lee, S. & Kim, W. (2012), ‘Varifocal liquid lens based on microelectrofluidic technology’, Optics Letters 37(21), 4377–4379.CrossRefGoogle Scholar
Chen, J., Wang, W., Fang, J. & Varahramyan, K. (2004), ‘Variable-focusing microlens with microfluidic chip’, Journal of Micromechanics and Microengineering 14(5), 675.CrossRefGoogle Scholar
Cheng, C.-C., Chang, C. A., Liu, C.-H. & Yeh, J. A. (2006a), ‘A tunable liquid-crystal microlens with hybrid alignment’, Journal of Optics A: Pure and Applied Optics 8(7), S365.CrossRefGoogle Scholar
Cheng, C.-C., Chang, C. A. & Yeh, J. A. (2006b), ‘Variable focus dielectric liquid droplet lens’, Optics Express 14(9), 4101–4106.CrossRefGoogle Scholar
Cheng, C.-C. & Yeh, J. A. (2007), ‘Dielectrically actuated liquid lens’, Optics Express 15(12), 7140–7145.
Chronis, N., Liu, G., Jeong, K.-H. & Lee, L. (2003), ‘Tunable liquid-filled microlens array integrated with microfluidic network’, Optics Express 11(19), 2370–2378.CrossRefGoogle Scholar
De Gennes, P.-G. (1985), ‘Wetting: statics and dynamics’, Reviews of Modern Physics 57(3), 827.CrossRefGoogle Scholar
Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. (2006), ‘Adaptive liquid microlenses activated by stimuli-responsive hydrogels’, Nature 442(7102), 551–554.CrossRefGoogle Scholar
Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. (2007), ‘Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels’, Advanced Materials 19(3), 401–405.CrossRefGoogle Scholar
Dong, L. & Jiang, H. (2006), ‘pH-adaptive microlenses using pinned liquid-liquid interfaces actuated by pH-responsive hydrogel’, Applied Physics Letters 89(21), 211120.CrossRefGoogle Scholar
Feng, G.-H. & Chou, Y.-C. (2009), ‘Fabrication and characterization of optofluidic flexible meniscus–biconvex lens system’, Sensors and Actuators A: Physical 156(2), 342–349.CrossRefGoogle Scholar
Feng, G.-H. & Liu, J.-H. (2013), ‘Simple-structured capillary-force-dominated tunable-focus liquid lens based on the higher-order-harmonic resonance of a piezoelectric ring transducer’, Applied Optics 52(4), 829–837.CrossRefGoogle Scholar
Gvozdarev, A. Y., Nevskaya, G. & Yudin, I. (2001), ‘Adjustable liquid-crystal microlenses with homeotropic orientation’, Journal of Optical Technology C/C of Opticheskii Zhurnal 68(9), 682–686.Google Scholar
Hu, X., Zhang, S., Qu, C., Zhang, Q., Lu, L., Ma, X., Zhang, X. & Deng, Y. (2011), ‘Ionic liquid based variable focus lenses’, Soft Matter 7(13), 5941–5943.CrossRefGoogle Scholar
Jeong, K.-H., Liu, G., Chronis, N. & Lee, L. (2004), ‘Tunable microdoublet lens array’, Optics Express 12(11), 2494–2500.CrossRefGoogle Scholar
Ji, H.-S., Kim, J.-H. & Kumar, S. (2003), ‘Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials’, Optics Letters 28(13), 1147–1149.CrossRefGoogle Scholar
Krogmann, F., Moench, W. & Zappe, H. (2006), ‘A MEMS-based variable micro-lens system’, Journal of Optics A: Pure and Applied Optics 8(7), S330.CrossRefGoogle Scholar
Krupenkin, T., Yang, S. & Mach, P. (2003), ‘Tunable liquid microlens’, Applied Physics Letters 82(3), 316–318.CrossRefGoogle Scholar
Kuiper, S. & Hendriks, B. (2004), ‘Variable-focus liquid lens for miniature cameras’, Applied Physics Letters 85(7), 1128–1130.CrossRefGoogle Scholar
Lee, J.-K., Park, K.-W., Choi, J. C., Kim, H.-R. & Kong, S. H. (2012a), ‘Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA–PDMS bonded membrane’, Journal of Micromechanics and Microengineering 22(11), 115028.CrossRefGoogle Scholar
Lee, J.-K., Park, K.-W., Lim, G.-B., Kim, H.-R. & Kong, S.-H. (2012b), ‘Variable-focus liquid lens based on a laterally-integrated thermopneumatic actuator’, Journal of the Optical Society of Korea 16(1), 22–28.CrossRefGoogle Scholar
Levy, U. & Shamai, R. (2008), ‘Tunable optofluidic devices’, Microfluidics and Nanofluidics 4(1-2), 97–105.CrossRefGoogle Scholar
Li, C. & Jiang, H. (2012), ‘Electrowetting-driven variable-focus microlens on flexible surfaces’, Applied Physics Letters 100(23), 231105.CrossRefGoogle Scholar
López, C. A. & Hirsa, A. H. (2008), ‘Fast focusing using a pinned-contact oscillating liquid lens’, Nature Photonics 2(10), 610–613.CrossRefGoogle Scholar
López, C. A., Lee, C.-C. & Hirsa, A. H. (2005), ‘Electrochemically activated adaptive liquid lens’, Applied Physics Letters 87(13), 134102.CrossRefGoogle Scholar
Lu, Y.-S., Tsai, L.-Y., Huang, K.-C., Tsai, C. G., Yang, C.-C. & Yeh, J. A. (2011), ‘Three-dimensional illumination system using dielectric liquid lenses’, Optics Express 19(104), A740–A746.CrossRefGoogle Scholar
Lu, Y.-S., Tu, H., Xu, Y. & Jiang, H. (2013), ‘Tunable dielectric liquid lens on flexible substrate’, Applied Physics Letters 103(26), 261113.CrossRefGoogle Scholar
Moon, H., Cho, S. K., Garrell, R. L. et al. (2002), ‘Low voltage electrowetting-on-dielectric’, Journal of Applied Physics 92(7), 4080–4087.Google Scholar
Moran, P. M., Dharmatilleke, S., Khaw, A. H., Tan, K. W., Chan, M. L. & Rodriguez, I. (2006), ‘Fluidic lenses with variable focal length’, Applied Physics Letters 88(4), 041120.CrossRefGoogle Scholar
Mugele, F. & Baret, J.-C. (2005), ‘Electrowetting: from basics to applications’, Journal of Physics: Condensed Matter 17(28), R705.Google Scholar
Nguyen, N.-T. (2010), ‘Micro-optofluidic lenses: a review’, Biomicrofluidics 4(3), 031501.CrossRefGoogle Scholar
Nose, T., Masuda, S. & Sato, S. (1992), ‘A liquid crystal microlens with hole-patterned electrodes on both substrates’, Japanese Journal of Applied Physics 31(part 1), 1643–1646.CrossRefGoogle Scholar
Olles, J. D., Vogel, M. J., Malouin, B. A. & Hirsa, A. H. (2011), ‘Optical performance of an oscillating, pinned-contact double droplet liquid lens’, Optics Express 19(20), 19399–19406.CrossRefGoogle Scholar
Paneru, M., Priest, C., Sedev, R. & Ralston, J. (2010), ‘Electrowetting of aqueous solutions of ionic liquid in solid–liquid–liquid systems’, The Journal of Physical Chemistry C 114(18), 8383–8388.CrossRefGoogle Scholar
Pouydebasque, A., Bridoux, C., Jacquet, F., Moreau, S., Sage, E., Saint-Patrice, D., Bouvier, C., Kopp, C., Marchand, G., Bolis, S. et al. (2011), ‘Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200mm wafers’, Sensors and Actuators A: Physical 172(1), 280–286.CrossRefGoogle Scholar
Quinn, A., Sedev, R. & Ralston, J. (2003), ‘Influence of the electrical double layer in electrowetting’, The Journal of Physical Chemistry B 107(5), 1163–1169.CrossRefGoogle Scholar
Ren, H., Fan, Y.-H. & Wu, S.-T. (2004), ‘Liquid-crystal microlens arrays using patterned polymer networks’, Optics Letters 29(14), 1608–1610.CrossRefGoogle Scholar
Ren, H., Xu, S., Liu, Y. & Wu, S.-T. (2011), ‘Electro-optical properties of dielectric liquid microlens’, Optics Communications 284(8), 2122–2125.CrossRefGoogle Scholar
Tsai, C. G., Chen, C.-N., Cheng, L.-S., Cheng, C.-C., Yang, J.-T. & Yeh, J. A. (2009), ‘Planar liquid confinement for optical centering of dielectric liquid lenses’, Photonics Technology Letters, IEEE 21(19), 1396–1398.CrossRefGoogle Scholar
Tsai, C. G., Hsieh, C. M. & Yeh, J. A. (2007), ‘Self-alignment of microchips using surface tension and solid edge’, Sensors and Actuators A: Physical 139(1), 343–349.CrossRefGoogle Scholar
Xiong, G.-R., Han, Y.-H., Sun, C.,Sun, L.-G., Han, G.-Z. & Gu, Z.-Z. (2008), ‘Liquid microlens with tunable focal length and light transmission’, Applied Physics Letters 92(24), 241119.CrossRefGoogle Scholar
Xue-Feng, Z., Rui-Feng, Y., Jian-Gang, W., Liang, D. & Li-Tian, L. (2004), ‘Actuation and control of droplets by using electrowetting-on-dielectric’, Chinese Physics Letters 21(9), 1851.CrossRefGoogle Scholar
Yang, C.-C., Tsai, C. G. & Yeh, J. A. (2010), ‘Miniaturization of dielectric liquid microlens in package’, Biomicrofluidics 4(4), 043006.CrossRefGoogle Scholar
Yang, C.-C., Tsai, C.-W. & Yeh, J. A. (2011), ‘Dynamic behavior of liquid microlenses actuated using dielectric force’, Journal of Microelectromechanical Systems 20(5), 1143–1149.CrossRefGoogle Scholar
Yang, C.-C., Yang, L., Tsai, C. G., Jou, P. H. & Yeh, J. A. (2012), ‘Fully developed contact angle change of a droplet in liquid actuated by dielectric force’, Applied Physics Letters 101(18), 182903.CrossRefGoogle Scholar
Zeng, X. & Jiang, H. (2008), ‘Tunable liquid microlens actuated by infrared light-responsive hydrogel’, Applied Physics Letters 93(15), 151101.CrossRefGoogle Scholar
Zeng, X., Li, C., Zhu, D., Cho, H. J. & Jiang, H. (2010), ‘Tunable microlens arrays actuated by various thermo-responsive hydrogel structures’, Journal of Micromechanics and Microengineering 20(11), 115035.CrossRefGoogle Scholar
Zeng, X., Smith, C. T., Gould, J. C., Heise, C. P. & Jiang, H. (2011), ‘Fiber endoscopes utilizing liquid tunable-focus microlenses actuated through infrared light’, Journal of Microelectromechanical Systems 20(3), 583–593.CrossRefGoogle Scholar
Zhu, D., Lo, C.-W., Li, C. & Jiang, H. (2012), ‘Hydrogel-based tunable-focus liquid microlens array with fast response time’, Journal of Microelectromechanical Systems 21(5), 1146–1155.CrossRefGoogle Scholar
Zhu, D., Zeng, X., Li, C. & Jiang, H. (2011), ‘Focus-tunable microlens arrays fabricated on spherical surfaces’, Journal of Microelectromechanical Systems 20(2), 389–395.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tunable Liquid Lenses
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tunable Liquid Lenses
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tunable Liquid Lenses
  • Edited by Hans Zappe, Albert-Ludwigs-Universität Freiburg, Germany, Claudia Duppé, Albert-Ludwigs-Universität Freiburg, Germany
  • Book: Tunable Micro-optics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139506052.005
Available formats
×