Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-18T16:02:49.779Z Has data issue: false hasContentIssue false

6 - Temperature decay of fluctuations

Published online by Cambridge University Press:  06 January 2010

David Ferry
Affiliation:
Arizona State University
Stephen Marshall Goodnick
Affiliation:
Arizona State University
Get access

Summary

When the temperature is raised above absolute zero, the amplitudes of both the weaklocalization, universal conductance fluctuations and the Aharonov-Bohm oscillations are reduced below the nominal value e2/ħ. In fact, the amplitude of nearly all quantum phase interference phenomena is likewise weakened. There is a variety of reasons for this. One reason, perhaps the simplest to understand, is that the coherence length is reduced, but this can arise as a consequence of either a reduction in the coherence time or a reduction in the diffuson coefficient. In fact, both of these effects occur. In Chapter 2, we discussed the temperature dependence of the mobility in high-mobility modulation-doped GaAs/AlGaAs heterostructures. The decay of the mobility couples to an equivalent decay in the diffuson constant (discussed in Chapters 2 and 5), D = ε2Fτ/d, where d is the dimensionality of the system, through both a small temperature dependence of the Fermi velocity and a much larger temperature dependence of the elastic scattering rate. The temperature dependence of the phase coherence time is less well understood but generally is thought to be limited by electron-electron scattering, particularly at low temperatures. At higher temperatures, of course, phonon scattering can introduce phase breaking.

Another interaction, though, is treated by the introduction of another characteristic length, the thermal diffuson length. The source for this lies in the thermal spreading of the energy levels or, more precisely, in thermal excitation and motion on the part of the carriers. At high temperatures, of course, the lattice interaction becomes important, and energy exchange with the phonon field will damp the phase coherence.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×