Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T16:54:14.897Z Has data issue: false hasContentIssue false

Chapter Three - Consequences of trait changes in host–parasitoid interactions in insect communities

Published online by Cambridge University Press:  05 February 2013

F. J. Frank van Veen
Affiliation:
Centre for Ecology and Conservation, University of Exeter
H. Charles Godfray
Affiliation:
Department of Zoology, University of Oxford
Takayuki Ohgushi
Affiliation:
Kyoto University, Japan
Oswald Schmitz
Affiliation:
Yale University, Connecticut
Robert D. Holt
Affiliation:
University of Florida
Get access

Summary

Introduction

Interactions between species can be direct, for example between predators and prey, or indirect where the effect of one species on another is transmitted by an intermediate species. This book is concerned with indirect effects that are mediated by changes in traits of the intermediate species. In this chapter we review evidence from research on insect host–parasitoid systems for the importance of trait-mediated indirect interactions in determining the dynamics and structure of insect food webs.

Parasitoids, like parasites, require a host organism for much of their development but unlike parasites they need to kill their host to complete development to the free-living adult stage. The parasitoid lifestyle has evolved in a number of insect groups, including the Diptera and the Coleoptera, but has reached its greatest diversity in the Hymenoptera, comprising probably over a million species (Quicke 1997). Their hosts are other arthropods, mainly insects but also spiders, for example. Parasitoid wasps have been popular subjects for biological research, in part because of their abundance and diversity which indicates their ecological significance and utility for biological control, but also because of their lifestyle which makes many aspects of their ecology and behaviour easier to study than those of predators.

Type
Chapter
Information
Trait-Mediated Indirect Interactions
Ecological and Evolutionary Perspectives
, pp. 28 - 46
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agelopoulos, N. G.Keller, M. A. 1994 Journal of Chemical Ecology 20 1735CrossRef
Andow, D. A. 1991 Vegetational diversity and arthropod population responseAnnual Review of Entomology 36 561CrossRefGoogle Scholar
Beckerman, A. P.Petchey, O. L.Warren, P. H. 2006 Foraging biology predicts food web complexityProceedings of the National Academy of Sciences of the United States of America 103 13745CrossRefGoogle ScholarPubMed
Beckerman, A. P.Uriarte, M.Schmitz, O. J. 1997 Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chainProceedings of the National Academy of Sciences of the United States of America 94 10735CrossRefGoogle Scholar
Boenisch, A.Petersen, G.Wyss, U. 1997 Influence of the hyperparasitoid on the reproduction of the grain aphid Ecological Entomology 22 1CrossRefGoogle Scholar
Borer, E. T.Seabloom, E. W.Shurin, J. B. 2005 What determines the strength of a trophic cascadeEcology 86 528CrossRefGoogle Scholar
Bukovinszky, T.Veen, F. J. F.Jongema, Y.Dicke, M. 2008 Direct and indirect effects of resource quality on food web structureScience 319 804CrossRefGoogle ScholarPubMed
Cardinale, B. J.Harvey, C. T.Gross, KIves, A. R. 2003 Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystemEcology Letters 6 857CrossRefGoogle Scholar
Chaneton, E. J.Bonsall, M. B. 2000 Enemy-mediated apparent competition: empirical patterns and the evidenceOikos 88 380CrossRefGoogle Scholar
Cohen, J. E.Briand, F.Newman, C. M. 1990 Community Food Webs: Data and TheoryBerlin, GermanySpringer-VerlagCrossRefGoogle Scholar
De Moraes, C. M.Lewis, W. J.Pare, P. W.Alborn, H. T.Tumlinson, J. H. 1998 Herbivore-infested plants selectively attract parasitoidsNature 393 570CrossRefGoogle Scholar
Dixon, A. F. G. 1998 Aphid EcologyLondonChapman and HallGoogle Scholar
Du, Y. J.Poppy, G. M.Powell, W. 1996 Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Journal of Chemical Ecology 22 1591CrossRefGoogle Scholar
Duffy, J. E. 2002 Biodiversity and ecosystem function: the consumer connectionOikos 99 201CrossRefGoogle Scholar
Duffy, J. E.Richardson, J. P.France, K. E. 2005 Ecosystem consequences of diversity depend on food chain length in estuarine vegetationEcology Letters 8 301CrossRefGoogle Scholar
Geervliet, J. B. F.Vet, L. E. M.Dicke, M. 1996 Innate responses of the parasitoids and (Hymenoptera: Braconidae) to volatiles from different plant–herbivore complexesJournal of Insect Behavior 9 525CrossRefGoogle Scholar
Godfray, H. C. J. 1994 Parasitoids: Behavioral and Evolutionary EcologyPrinceton, NJPrinceton University PressGoogle Scholar
Gray, S.Gildow, F. E. 2003 Luteovirus–aphid interactionsAnnual Review of Phytopathology 41 539CrossRefGoogle ScholarPubMed
Halaj, J.Wise, D. H. 2001 Terrestrial trophic cascades: how much do they trickle?American Naturalist 157 262CrossRefGoogle ScholarPubMed
Hambäck, P. A.Stenberg, J. A.Ericson, L. 2006 Asymmetric indirect interactions mediated by a shared parasitoid: connecting species traits and local distribution patterns for two chrysomelid beetlesOecologia 148 475CrossRefGoogle ScholarPubMed
Hanski, I. 1999 Metapopulation EcologyOxfordOxford University PressGoogle Scholar
Hassell, M. P. 1971 Mutual interference between searching insect parasitesJournal of Animal Ecology 40 473CrossRefGoogle Scholar
Hassell, M. P. 2000 Host–parasitoid population dynamicsJournal of Animal Ecology 69 543CrossRefGoogle Scholar
Hassell, M. P.Varley, G. C. 1969 New inductive population model for insect parasites and its bearing on biological controlNature 223 1133CrossRefGoogle ScholarPubMed
Hawlena, D.Perez-Mellado, V. 2009 Change your diet or die: predator-induced shifts in insectivorous lizard feeding ecologyOecologia 161 411CrossRefGoogle ScholarPubMed
Hillebrand, H.Cardinale, B. J. 2004 Consumer effects decline with prey diversityEcology Letters 7 192CrossRefGoogle Scholar
Hogenhout, S. A.Ammar, E. D.Whitfield, A. E.Redinbaugh, M. G. 2008 Insect vector interactions with persistently transmitted virusesAnnual Review of Phytopathology 46 327CrossRefGoogle ScholarPubMed
Höller, C.Borgemeister, C.Haardt, H.Powell, W. 1993 The relationship between primary parasitoids and hyperparasitoids of cereal aphids: an analysis of field dataJournal of Animal Ecology 62 12CrossRefGoogle Scholar
Holt, R. D. 1977 Predation, apparent competition, and structure of prey communitiesTheoretical Population Biology 12 197CrossRefGoogle ScholarPubMed
Ings, T. C.Montoya, J. M.Bascompte, J. 2009 Ecological networks: beyond food websJournal of Animal Ecology 78CrossRefGoogle ScholarPubMed
Johnson, M. T. J.Lajeunesse, M. J.Agrawal, A. A. 2006 Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitnessEcology Letters 9 24Google ScholarPubMed
Jones, T. S.Allen, E.Härri, S. A.Krauss, J.Müller, C. B.Veen, F. J. F. 2011 Effects of genetic diversity of grass on insect species diversity at higher trophic levels are not due to cascading diversity effectsOikos 120 1031CrossRefGoogle Scholar
Kratina, P.Vos, M.Anholt, B. R. 2007 Species diversity modulates predationEcology 88 1917CrossRefGoogle ScholarPubMed
Kunert, G.Otto, S.Rose, U. S. R.Gershenzon, J.Weisser, W. W. 2005 Alarm pheromone mediates production of winged dispersal morphs in aphidsEcology Letters 8 596CrossRefGoogle Scholar
Kunert, G.Trautsch, J.Weisser, W. W. 2007 Density dependence of the alarm pheromone effect in pea aphids, (Sternorrhyncha: Aphididae)European Journal of Entomology 104 47CrossRefGoogle Scholar
Law, R.Plank, M. J.James, A.Blanchard, J. L. 2009 Size-spectra dynamics from stochastic predation and growth of individualsEcology 90 802CrossRefGoogle ScholarPubMed
LeBrun, E. G.Feener, D. H. 2002 Linked indirect effects in ant–phorid interactions: impacts on ant assemblage structureOecologia 133 599CrossRefGoogle ScholarPubMed
LeBrun, E. G.Plowes, R. M.Gilbert, L. E. 2009 Indirect competition facilitates widespread displacement of one naturalized parasitoid of imported fire ants by anotherEcology 90 1184CrossRefGoogle Scholar
Leibold, M. A. 1989 Resource edibility and the effects of predators and productivity on the outcome of trophic interactionsAmerican Naturalist 134 922CrossRefGoogle Scholar
Levins, R. 1969 Some demographic and genetic consequences of environmental heterogeneity for biological controlBulletin of the Entomological Society of America 15 237CrossRefGoogle Scholar
McCall, P. J.Turlings, T. C. J.Lewis, W. J.Tumlinson, J. H. 1993 Role of plant volatiles in host location by the specialist parasitoid (Braconidae, Hymenoptera)Journal of Insect Behavior 6 625CrossRefGoogle Scholar
Mondor, E. B.Tremblay, M. N.Lindroth, R. L. 2004 Transgenerational phenotypic plasticity under future atmospheric conditionsEcology Letters 7 941CrossRefGoogle Scholar
Montgomery, M. E.Nault, L. R. 1977 Comparative response of aphids to alarm pheromone, (e)-β-farneseneEntomologia Experimentalis et Applicata 22 236CrossRefGoogle Scholar
Montoya, J. M.Pimm, S. L.Sole, R. V. 2006 Ecological networks and their fragilityNature 442 259CrossRefGoogle ScholarPubMed
Mooney, K. A.Gruner, D. S.Barber, N. A. 2010 Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plantsProceedings of the National Academy of Sciences of the United States of America107Google ScholarPubMed
Müller, C. B.Adriaanse, I. C. T.Belshaw, R.Godfray, H. C. J. 1999 The structure of an aphid–parasitoid communityJournal of Animal Ecology 68 346CrossRefGoogle Scholar
Ng, J. C. K.Falk, B. W. 2006 Virus–vector interactions mediating nonpersistent and semipersistent transmission of plant virusesAnnual Review of Phytopathology 44 183CrossRefGoogle ScholarPubMed
Nicholson, A. J.Bailey, V. A. 1935 The balance of animal populationsProceedings of the Zoological Society of London 1 551CrossRefGoogle Scholar
Palomo, G.Botto, F.Navarro, D.Escapa, M.Iribarne, O. 2003 Does the presence of the SW Atlantic burrowing crab Dana affect predator–prey interactions between shorebirds and polychaetes?Journal of Experimental Marine Biology and Ecology 290CrossRefGoogle Scholar
Petchey, O. L.Beckerman, A. P.Riede, J. O.Warren, P. H. 2008 Size, foraging, and food web structureProceedings of the National Academy of Sciences of the United States of America 105 4191CrossRefGoogle ScholarPubMed
Poelman, E. H.Dam, N. M.Loon, J. J. A.Vet, L. E. M.Dicke, M. 2009 Chemical diversity in affects biodiversity of insect herbivoresEcology 90 1863CrossRefGoogle ScholarPubMed
Polis, G. A. 1999 Why are parts of the world green? Multiple factors control productivity and the distribution of biomassOikos 86 3CrossRefGoogle Scholar
Polis, G. A.Sears, A. L. W.Huxel, G. R.Strong, D. R.Maron, J. 2000 When is a trophic cascade a trophic cascade?Trends in Ecology and Evolution 15 473CrossRefGoogle ScholarPubMed
Quicke, D. L. J. 1997 Parasitic WaspsLondonChapman and HallGoogle Scholar
Ripple, W. J.Beschta, R. L. 2007 Restoring Yellowstone’s aspen with wolvesBiological Conservation 138 514CrossRefGoogle Scholar
Schmitz, O. J.Beckerman, A. P.O’Brien, K. M. 1997 Behaviorally mediated trophic cascades: effects of predation risk on food web interactionsEcology 78 1388CrossRefGoogle Scholar
Schmitz, O. J.Hambäck, P. A.Beckerman, A. P. 2000 Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plantsAmerican Naturalist 155 141CrossRefGoogle ScholarPubMed
Shurin, J. B.Borer, E. T.Seabloom, E. W. 2002 A cross-ecosystem comparison of the strength of trophic cascadesEcology Letters 5CrossRefGoogle Scholar
Sloggett, J. J.Weisser, W. W. 2002 Parasitoids induce production of the dispersal morph of the pea aphid, Oikos 98 323CrossRefGoogle Scholar
Sole, R. V.Montoya, J. M. 2001 Complexity and fragility in ecological networksProceedings of the Royal Society of London, Series B 268 2039CrossRefGoogle ScholarPubMed
Steiner, C. F. 2001 The effects of prey heterogeneity and consumer identity on the limitation of trophic-level biomassEcology 82 2495CrossRefGoogle Scholar
Strong, D. R. 1992 Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystemsEcology 73 747CrossRefGoogle Scholar
Terborg, J.Estes, J. A. 2010 Trophic Cascades: Predators, Prey and the Changing Dynamics of NatureWashington DCIsland Press
Turlings, T. C. J.Benrey, B. 1998 Effects of plant metabolites on the behavior and development of parasitic waspsEcoscience 5 321CrossRefGoogle Scholar
Turlings, T. C. J.McCall, P. J.Alborn, H. T.Tumlinson, J. H. 1993 An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic waspsJournal of Chemical Ecology 19 411CrossRefGoogle ScholarPubMed
Turlings, T. C. J.Tumlinson, J. H.Lewis, W. J. 1990 Exploitation of herbivore-induced plant odors by host-seeking parasitic waspsScience 250 1251CrossRefGoogle ScholarPubMed
Underwood, N.Rausher, M. D. 2000 The effects of host-plant genotype on herbivore population dynamicsEcology 81 1565CrossRefGoogle Scholar
Veen, F. J. F.Brandon, C. E.Godfray, H. C. J. 2009 A positive trait-mediated indirect effect involving the natural enemies of competing herbivoresOecologia 160 195CrossRefGoogle ScholarPubMed
Veen, F. J. F.Morris, R. J.Godfray, H. C. J. 2006 Apparent competition, quantitative food webs, and the structure of phytophagous insect communitiesAnnual Review of Entomology 51 187CrossRefGoogle ScholarPubMed
Veen, F. J. F.Mueller, C. B.Pell, J. K.Godfray, H. C. J. 2008 Food web structure of three guilds of natural enemies: predators, parasitoids and pathogens of aphidsJournal of Animal Ecology 77 191CrossRefGoogle ScholarPubMed
Veen, F. J. F.Rajkumar, A.Müller, C. B.Godfray, H. C. J. 2001 Increased reproduction by pea aphids in the presence of secondary parasitoidsEcological Entomology 26 425CrossRefGoogle Scholar
Veen, F. J. F.Holland, P.  D.Godfray, H. C. J. 2005 Stable coexistence in insect communities due to density- and trait-mediated indirect effectsEcology 86 3182CrossRefGoogle Scholar
Vet, L. E. M.Dicke, M. 1992 Ecology of infochemical use by natural enemies in a tritrophic contextAnnual Review of Entomology 37 141CrossRefGoogle Scholar
Vos, M.Berrocal, S. M.Karamaouna, F.Hemerik, L.Vet, L. E. M. 2001 Plant-mediated indirect effects and the persistence of parasitoid-herbivore communitiesEcology Letters 4 38CrossRefGoogle Scholar
Weisser, W. W.Braendle, C.Minoretti, N. 1999 Predator-induced morphological shift in the pea aphidProceedings of the Royal Society of London, Series B 266 1175CrossRefGoogle Scholar
Williams, R. J.Martinez, N. D. 2000 Simple rules yield complex food websNature 404 180CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×