Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T00:53:30.771Z Has data issue: false hasContentIssue false

9 - Homotopy obstructions to rational points

from PART TWO - CONTRIBUTED PAPERS

Published online by Cambridge University Press:  05 May 2013

Y. Harpaz
Affiliation:
The Hebrew University of Jerusalem
T. M. Schlank
Affiliation:
The Hebrew University of Jerusalem
Alexei N. Skorobogatov
Affiliation:
Imperial College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[AMa69] Artin, M., Mazur, B., Étale Homotopy, Lecture Notes in Mathematics, 100, 1969.
[Bro73] Brown, K. S., Abstract homotopy theory and generalized sheaf cohomology, Transactions of the American Mathematical Society, 186, 1973, p. 419–458.Google Scholar
[BSc11] Barnea, I., Schlank, T. M., A projective model structure on pro simplicial sheaves, and the relative étale homotopy type, preprint http://arxiv.org/pdf/1109.5477.pdf.
[BSe64] Borel, A., Serre, J. -P., Théorèmes de finitude en cohomologie galoisienne, Commentarii Mathematici Helvetici, 39(1), 1964, p. 111–164.Google Scholar
[CTS80] Colliot-Thélène, J. -L., Sansuc, J. -J., La descente sur les variétés rationnelles, Journées de Géométrie Algébrique d'Angers, Juillet 1979, p. 223–237.
[CTS87] Colliot-Thélène, J. -L., Sansuc, J. -J., La descente sur les variétés rationnelles II, Duke Mathematical Journal, 54 (2), 1987, p. 375–492.Google Scholar
[De09a] Demarche, C., Obstruction de descente et obstruction de Brauer-Manin étale, Algebra and Number Theory, 3 (2), 2009, p. 237–254.Google Scholar
[De09b] Demarche, C., Théorèmes de dualité pour les complexes de tores, preprint, 2009, http://arxiv.org/abs/0906.3453v1.
[Dol58] Dold, A., Homology of symmetric products and other functors of complexes, Annals of Mathematics, 68 (1), 1958.Google Scholar
[EHa76] Edwards, D. A., Hastings H., M.. Cech and Steenrod homotopy theories with applications to geometric topology, Lecture Notes in Mathematics, 542, Springer Verlag, 1976.
[FIs07] Fausk, H., Isaksen, D. C., Model structures on pro-categories, Homology, Homotopy and Applications, 9 (1), 2007, p. 367–398.Google Scholar
[Fri82] Friedlander, E. M., Étale homotopy of simplicial schemes, Annals of Mathematics Studies, 104, Princeton University Press, 1982.
[GJa99] Goerss P., G, Jardine J., F. Simplicial Homotopy Theory, Progress in Mathematics, 174, Birkhäuser, 1999.
[Goe95] Goerss, P. G., Homotopy fixed points for Galois groups, Contemporary Mathematics, 181, p. 187–224.
[Har02] Harari, D., Groupes algébriques et points rationnels, Mathematische Annalen, 322 (4), 2002, p. 811–826.Google Scholar
[HSk02] Harari, D., Skorobogatov, A. N., Non-abelian cohomology and rational points, Compositio Mathematica, 130 (3), 2002, p. 241–273.Google Scholar
[HSz05] Harari, D., Szamuely, T., Arithmetic duality theorems for 1-motives, Journal für die reine und angewandte Mathematik, 578, 2005, p. 93–128.Google Scholar
[Isk71] Iskovskikh, V. A., A counterexample to the Hasse principle for systems of two quadratic forms in five variables, Mathematical Notes, 10 (3), 1971, p. 575–577.Google Scholar
[Jar87] Jardine, J. F., Simplicial Presheaves, Journal of Pure and Applied Algebra, 47, 1987, p. 35–87.Google Scholar
[Jos09] Jossen, P., The Arithmetic of 1-motives, Thesis, Central European University, 2009.
[Lie08] Lieblich, M., Twisted sheaves and the period-index problem, Compositio Mathematica, 144, 2008, p. 1–31.Google Scholar
[Lin40] Lind, C. -E., Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940.
[Man70] Manin, Y. I., Le groupe de Brauer-Grothendieck en géométrie dio-phantienne, Actes du Congrès International Des Mathématiciens, Tome 1, 1970, p. 401–411.
[Mil06] Milne, J. -S., Arithmetic Duality Theorems, 2nd ed., BookSurge, LLC., 2006.
[Pal10] Pál, A., Homotopy sections and rational points on algebraic varieties, http://arxiv.org/abs/1002.1731, preprint, 2010.
[Poo10] Poonen, B., Insufficiency of the Brauer-Manin obstruction applied to étale covers, Ann. of Math. 171, 2010, p. 2157–2169.Google Scholar
[Qui09] Quick, G., Continuous group actions on profinite spaces, Journal of Pure and Applied Algebra, 215, 2011, p. 1024–1039.Google Scholar
[Rei42] Reichardt, H., Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, Journal für die reine und angewandte Mathematik, 184, 1942, p. 12–18.Google Scholar
[Sch09] Schlank, T. -M., On the Brauer-Manin obstruction applied to ramified covers, preprint, 2009, http://arxiv.org/abs/0911.5728.
[SGA4] Artin, M., Grothendieck, A., Verdier, J. L., Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Math. 270, Springer, 1972.
[Sko99] Skorobogatov, A. N., Beyond the Manin obstruction, Inventiones Mathematicae, 135 (2), 1999, p. 399–424.Google Scholar
[Sko01] Skorobogatov, A. N., Torsors and Rational Points, Cambridge University Press, 2001.
[Sko09] Skorobogatov, A. N., Descent obstruction is equivalent to étale Brauer-Manin obstruction, Mathematische Annalen, 344 (3), 2009, p. 501–510.Google Scholar
[Spa88] Spaltenstein, N., Resolutions of unbounded complexes, Compositio Mathematica, 65 (2), 1988, p. 121–154.Google Scholar
[Sto07] Stoll, M., Finite descent obstructions and rational points on curves, Algebra and Number Theory, 1 (4), 2007, p. 349–391.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×