Published online by Cambridge University Press: 05 June 2012
The origins of topological graph theory lie in the 19th century, largely with the four colour problem and its extension to higher-order surfaces – the Heawood map problem. With the explosive growth of topology in the early 20th century, mathematicians like Veblen, Rado and Papakyriakopoulos provided foundational results for understanding surfaces combinatorially and algebraically. Kuratowski, MacLane and Whitney in the 1930s approached the four colour problem as a question about the structure of graphs that can be drawn without edge-crossings in the plane. Kuratowski's theorem characterizing planarity by two obstructions is the most famous, and its generalization to the higher-order surfaces became an influential unsolved problem.
The second half of the 20th century saw the solutions of all three problems: the Heawood map problem by Ringel, Youngs et al. by 1968, the four colour problem by Appel and Haken in 1976, and finally the generalized Kuratowski problem by Robertson and Seymour in the mid-1990s. Each is a landmark of 20th-century mathematics. The Ringel–Youngs work led to an alliance between combinatorics and the algebraic topology of branched coverings. The Appel–Haken work was the first time that a mathematical theorem relied on exhaustive computer calculations. And the Robertson–Seymour work led to their solution of Wagner's conjecture, which provides a breathtaking structure for the collection of all finite graphs, a collection that would seem to have no structure at all.
Each of these problems centres on the question of which graphs can be embedded in which surfaces, with two complementary perspectives – fixing the graph or fixing the surface.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.