Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T23:37:47.382Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Josef Lauri
Affiliation:
University of Malta
Raffaele Scapellato
Affiliation:
Politecnico di Milano
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] U. P., Acharya and H. S., Mehta. “2-Cartesian product of special graphs”. In: Int. J. Math. and Soft Comput. 4.1 (2014), pp. 139–144 (cit. on p. 108).Google Scholar
[2] Á., Ádám. “Research problem 2-10”. In: J. Combin. Theory 2 (1967), p. 393 (cit. on p. 122).Google Scholar
[3] N., Alon, Y., Caro, I., Krasikov, and Y., Roditty. “Combinatorial reconstruction problems”. In: J. Combin. Theory (Ser. B) 47 (1989), pp. 153–161 (cit. on p. 169).Google Scholar
[4] N., Alon and J. H., Spencer. The Probabilistic Method. Wiley, 1992 (cit. on p. 38).
[5] B., Alspach. “Point-symmetric graphs and digraphs of prime order and transitive groups of prime degree”. In: J. Combin. Theory (Ser. B) 15 (1973), pp. 12–17 (cit. on p. 122).Google Scholar
[6] B., Alspach. “Isomorphism and Cayley graphs on abelian groups”. In: Graph Symmetry: Algebraic Methods and Applications. Ed. by G., Hahn and G., Sabidussi. Kluwer Acad. Publ., 1997, pp. 1–22 (cit. on p. 122).
[7] B., Alspach, D., Marŭsĭc, and L. A., Nowitz. “Constructing graphs which are 1/2-transitive”. In: J. Austral. Math. Soc. (Ser. A) 56 (1994), pp. 391–402 (cit. on p. 48).Google Scholar
[8] B., Alspach and T. D., Parsons. “A construction for vertex-transitive graphs”. In: Canad. J. Math. 34 (1982), pp. 307–318 (cit. on pp. 115, 122).Google Scholar
[9] B., Alspach and M.-Y., Xu. “12 -arc-transitive graphs of order 3p”. In: J. Algebraic Combin. 3 (1994), pp. 347–355 (cit. on p. 91).Google Scholar
[10] W. C., Arlinghaus and F., Harary. “The digraph number of a finite abelian group”. In: Wiss. Z. Tech. Hochsch. Ilmenau 33.1 (1987), pp. 25–31 (cit. on p. 62).Google Scholar
[11] M., Aschbacher. “The nonexistence of rank three permutation groups of degree 3250 and subdegree 57”. In: J. Algebra 19 (1971), pp. 538–540 (cit. on p. 77).Google Scholar
[12] K., Asciak. “The degree-associated edge-reconstruction number of disconnected graphs and trees”. Preprint. 2015 (cit. on p. 144).
[13] K., Asciak and J., Lauri. “On disconnected graphs with large reconstruction numbers”. In: Ars Combin. 62 (2002), pp. 173–181 (cit. on p. 143).Google Scholar
[14] K., Asciak and J., Lauri. “On the edge-reconstruction number of disconnected graphs”. In: Bull. Inst. Combin. and Its Applics. 63 (2011), pp. 87–100 (cit. on p. 143).Google Scholar
[15] K., Asciak, J., Lauri, W., Myrvold, and V., Pannone. “On the edge-reconstruction number of a tree”. In: Australas. J. Combin. 60 (2014), pp. 169–190 (cit. on p. 144).Google Scholar
[16] L., Babai. “Long cycles in vertex-transitive graphs”. In: J. Graph Theory 3 (1979), pp. 23–29 (cit. on p. 60).Google Scholar
[17] L., Babai. “On the abstract group of automorphisms”. In: Combinatorics. Ed. by H. N. V., Temperley. Vol. 52. London Math. Soc. Lecture Note Series. Proceedings of the Eighth British Combinatorial Conference University College Swansea, 1981. Cambridge University Press, 1981, pp. 1–40 (cit. on p. 62).
[18] L., Babai. “Automrphism groups, isomorphism, reconstruction”. In: Handbook of Combinatorics. Ed. by R., Graham, M., Grötschel, and L., Lovász. Vol. 2. Elsevier Science B.V., 1995. Chap. 27, pp. 1447–1540 (cit. on p. 63).
[19] D. W., Bange, A. E., Barkauskas, and L. H., Host. “Class-reconstruction of total graphs”. In: J. Graph Theory 11 (1987), pp. 221–230 (cit. on p. 147).Google Scholar
[20] M. D., Barrus and D. B., West. “Degree associated reconstruction number of graphs”. In: Discrete Math. 310 (2010), pp. 2600–2612 (cit. on p. 144).Google Scholar
[21] R. A., Beaumont and R. P., Peterson. “Set-transitive permutation groups”. In: Canadian J. Math. 7 (1955), pp. 35–42 (cit. on p. 115).Google Scholar
[22] M., Behzad, G., Chartrand, and L., Lesniak-Foster. Graphs and Digraphs. Prindle, Weber & Schmidt, 1979 (cit. on pp. 17, 60, 62).
[23] L. W., Beineke and E. T., Parker. “On nonreconstructable tournaments”. In: J. Combinatorial Theory 9 (1970), pp. 324–326 (cit. on p. 137).Google Scholar
[24] N. L., Biggs. Algebraic Graph Theory. Cambridge University Press, 1993 (cit. on pp. 17, 32, 34, 38, 77, 108, 154).
[25] N. L., Biggs and D. H., Smith. “On trivalent graphs”. In: Bull. London Math. Soc. 3 (1971), pp. 155–158 (cit. on p. 38).Google Scholar
[26] N. L., Biggs and A. T., White. Permutation Groups and Combinatorial Structures. Cambridge University Press, 1979 (cit. on p. 77).
[27] B., Bollobás. “Almost every graph has reconstruction number 3”. In: J. Graph Theory 14 (1990), pp. 1–4 (cit. on p. 38).Google Scholar
[28] B., Bollobás. Modern Graph Theory. Springer-Verlag, 1998 (cit. on p. 17).
[29] B., Bollobás. Random Graphs. Cambridge University Press, 2001(cit. on pp. 36, 38).
[30] A., Bondy and U. S. R., Murty. Graph Theory (Graduate Texts in Mathematics). Springer, 2008 (cit. on p. 36).
[31] J. A., Bondy. “A graph reconstructor's manual”. In: Surveys in Combinatorics. Ed. by A. D., Keedwell. Cambridge University Press, 1991, pp. 221–252 (cit. on pp. 123, 156).
[32] J. A., Bondy and R. L., Hemminger. “Graph reconstruction—a survey”. In: J. Graph Theory 1 (1977), pp. 227–268 (cit. on pp. 123, 137, 139).Google Scholar
[33] I. Z., Bouwer. “An edge but not vertex transitive cubic graph”. In: Canad. Math. Bull. 11.4 (1968), pp. 533–534 (cit. on p. 20).Google Scholar
[34] I. Z., Bouwer. “Vertex and edge transitive but not 1-transitive graphs”. In: Canad. Math. Bull. 13 (1970), pp. 231–237 (cit. on p. 48).Google Scholar
[35] I. Z., Bouwer. “Section graphs for finite permutation groups”. In: J. Combin. Theory 6 (1971), pp. 378–386 (cit. on p. 62).Google Scholar
[36] D. P., Bovet and P., Crescenzi. Introduction to the Theory of Complexity. Prentice Hall, 1994 (cit. on pp. 13, 17).
[37] A., Bowler, P. A., Brown, and T., Fenner. “Families of pairs of graphs with a large number of common cards”. In: J. Graph Theory 63.2 (2010), pp. 146–163 (cit. on p. 144).Google Scholar
[38] A., Bowler, P. A., Brown, T., Fenner, and W., Myrvold. “Recognizing connectedness from vertex-deleted subgraphs”. In: J. Graph Theory 67.4 (2011), pp. 285–299 (cit. on p. 144).Google Scholar
[39] A. E., Brouwer. Parameters of Strongly Regular Graphs. www.win.tue.nl/ ~aeb/graphs/srg/srgtab.html (cit. on pp. 76, 77).
[40] A. E., Brouwer, A. M., Cohen, and A., Neumaier. Distance-Regular Graphs. Springer-Verlag, 1989 (cit. on p. 38).
[41] P. A., Brown. “On the Maximum Number of Common Cards between Various Classes of Graphs”. PhD thesis. Birkbeck College, University of London, 2008 (cit. on p. 144).
[42] J. M., Burns and B., Goldsmith. “The trace of an abelian group—an application to digraphs”. In: Proc. Roy. Irish. Acad. Sect. A 95 (1995), pp. 75–79 (cit. on p. 62).Google Scholar
[43] P. J., Cameron. “Strongly regular graphs”. In: Selected Topics in Graph Theory. Ed. by L.W., Beineke and R. J., Wilson. Academic Press, 1978. Chap. 12 (cit. on p. 77).
[44] P. J., Cameron. “Automorphism groups of graphs”. In: Selected Topics in Graph Theory, Vol. 2. Ed. by L. W., Beineke and R. J., Wilson. Academic Press, 1983. Chap. 4 (cit. on p. 77).
[45] P. J., Cameron. Oligomorphic Permutation Groups. Cambridge University Press, 1990 (cit. on p. 63).
[46] P. J., Cameron. “Some open problems on permutation groups”. In: Groups, Combinatorics and Geometry. Ed. by M. W., Liebeck and J., Saxl. London Mathematical Society Lecture Notes 165. Cambridge University Press, 1992 (cit. on p. 169).
[47] P. J., Cameron. “Stories from the age of reconstruction”. In: Congr. Num. 113 (1996), pp. 31–41 (cit. on p. 169).Google Scholar
[48] P. J., Cameron. “Oligomorphic groups and homogeneous graphs”. In: Graph Symmetry: Algebraic Methods and Its Applications. Ed. by G., Hahn and G., Sabidussi. Kluwer Acad. Publ., 1997, pp. 23–74 (cit. on p. 63).
[49] P. J., Cameron. Permutation Groups. Vol. 45. London Mathematical Society Student Texts. Cambridge University Press, 1999 (cit. on pp. 7, 17, 38, 63, 77).
[50] P. J., Cameron and J. H., van Lint. Designs, Graphs, Codes and Their Links. Vol. 22. London Mathematical Society Student Texts. Cambridge University Press, 1991 (cit. on p. 77).
[51] M., Capobianco and J. C., Molluzzo. Examples and Counterexamples in Graph Theory. North-Holland, 1978 (cit. on p. 122).
[52] K. M., Cattermole. “Graph theory and connection networks”. In: Applications of Graph Theory. Ed. by R. J., Wilson and L. W., Beineke. Academic Press, 1979, pp. 17–57 (cit. on p. 97).
[53] P. V., Ceccherini and A., Sappa. “A new characterization of hypercubes”. In: Ann. Discrete Math. 30 (1986), pp. 137–142 (cit. on p. 38).Google Scholar
[54] G., Chartrand, A., Kaugars, and D. R., Lick.Critically n-connected graphs”. In: Proc. Amer. Math. Soc. 32 (1972), pp. 63–68 (cit. on p. 139).Google Scholar
[55] P. Z., Chinn. “A graph with p points and enough distinct (p − 2)-order subgraphs is reconstructible”. In: Recent Trends in Graph Theory. Ed. by M., Capobianco et al. Vol. 186. Lecture Notes in Mathematics. Springer-Verlag, 1971, pp. 71–73 (cit. on p. 139).
[56] M., Conder, A., Malnič, D., Marušič, T., Pisanski, and P., Potočnik. “The edgetransitive but not vertex-transitive cubic graph on 112 vertices”. In: J. Graph Theory 50.1 (2005), pp. 25–42 (cit. on p. 38).Google Scholar
[57] H. S. M., Coxeter, R., Frucht, and D. L., Powers. Zero-Symmetric Graphs: Trivalent Graphical Regular Representations of Groups. Academic Press, 1981 (cit. on pp. 91, 122).
[58] D. M., Cvetković, M., Doob, and H., Sachs. Spectra of Graphs (3rd Ed.)Johann Ambrosius Barth, 1995 (cit. on p. 38).
[59] D., Cvetković and M., Lepović. “Seeking counterexamples to the reconstruction conjecture for the characteristic polynomial of graphs and a positive result”. In: Bull. Cl. Sci. Math. Nat. Sci. Math. 23 (1998), pp. 91–100 (cit. on p. 148).Google Scholar
[60] E. R. van, Dam. “Nonregular graphs with three eigenvalues”. In: J. Combin. Theory Ser. B 73.2 (1998), pp. 101–118 (cit. on p. 73).Google Scholar
[61] R., Diestel. Graph Theory. Springer-Verlag, 1997 (cit. on p. 17).
[62] J. D., Dixon and B., Mortimer. Permutation Groups. Springer-Verlag, 1996 (cit. on pp. 7, 17).
[63] W., Dörfler. “Every regular graph is a quasigroup graph”. In: Discrete Math. 10 (1974), pp. 181–183 (cit. on p. 122).Google Scholar
[64] P., Doyle. “A 27-vertex graph that is vertex-transitive and edge-transitive but not 1-transitive”. In: URL: http://arxiv.org/abs/math/0703861(1998) (cit. on p. 48).
[65] P., Dulio and V., Pannone. “The converse of Kelly's Lemma and control-classes in graph reconstruction”. In: Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), pp. 25–38 (cit. on pp. 129, 139).Google Scholar
[66] B., Elspas and J., Turner. “Graphs with circulant adjacency matrices”. In: J. Combin. Theory 9 (1970), pp. 297–307 (cit. on p. 122).Google Scholar
[67] P., Erdös, C., Ko, and R., Rado. “Intersection theorems for systems of finite sets”. In: Quart. J. Math. 12 (1961), pp. 313–320 (cit. on p. 122).Google Scholar
[68] P., Erdös, A., Rényi, and V. T., Sós. “On a problem of graph theory”. In: Studia Sci. Math. Hungar. 1 (1966), pp. 215–235 (cit. on p. 77).Google Scholar
[69] G., Exoo. Miscellaneous Topics in Combinatorics. URL: http://ginger.indstate.edu/ge/COMBIN/index.html (cit. on pp. 78, 87).
[70] H., Fan. “Edge reconstruction of planar graphs with minimum degree at least three—IV”. In: Systems Sci. Math. Sci. 7 (1994), pp. 218–222 (cit. on p. 139).Google Scholar
[71] Xin Gui, Fang, Cai Heng, Li, Jie, Wang, and Ming Yao, Xu. “On cubic Cayley graphs of finite simple groups”. In: Discrete Math. 244.1-3 (2002). Algebraic and topological methods in graph theory (Lake Bled, 1999), pp. 67–75 (cit. on p. 91).Google Scholar
[72] I. A., Faradzev and M., Klin. “Computer package for computation with coherent configurations”. In: Proc. ISSAC-91. (Bonn). ACM Press, 1991, pp. 219–223 (cit. on p. 77).
[73] S., Fiorini. “A theorem on planar graphs with an application to the reconstruction problem, I”. In: Quart. J. Math. Oxford (2) 29 (1978), pp. 353–361 (cit. on p. 134).Google Scholar
[74] S., Fiorini. “On the edge-reconstruction of planar graphs”. In: Math. Proc. Camb. Phil. Soc. 83 (1978) (cit. on p. 139).Google Scholar
[75] S., Fiorini and J., Lauri. “The reconstruction of maximal planar graphs. I. Recognition”. In: J. Combin. Theory Ser. B 30.2 (1981), pp. 188–195 (cit. on p. 135).Google Scholar
[76] S., Fiorini and B., Manvel.A theorem on planar graphs with an application to the reconstruction problem. II”. In: J. Combin. Inform. System Sci. 3.4 (1978), pp. 200–216 (cit. on p. 135).Google Scholar
[77] J., Folkman.Regular line-symmetric graphs”. In: J. Combin. Theory 3 (1967), pp. 215–232 (cit. on pp. 20, 35).Google Scholar
[78] R., Frucht.Graphs of degree three with a given abstract group”. In: Canad. J. Math. 1 (1949), pp. 365–378 (cit. on p. 62).Google Scholar
[79] R., Frucht.How to describe a graph”. In: Ann. N. Y. Acad. Sci. 175 (1970), pp. 159–67 (cit. on p. 122).Google Scholar
[80] R., Frucht, J. E., Graver, and M. E., Watkins.The groups of generalized Petersen graphs”. In: Proc. Cambridge Phil. Soc. 70 (1971), pp. 211–218 (cit. on pp. 110, 122).Google Scholar
[81] G., Gamble and C. E., Praeger.Vertex-primitive groups and graphs of order twice the product of two distinct odd primes”. In: J. Group Theory 3.3 (2000), pp. 247–269 (cit. on p. 62).Google Scholar
[82] M. R., Garey and D. S., Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H., Freeman, 1979 (cit. on pp. 13, 17).
[83] G., Gauyacq. “Routages uniformes dans les graphes sommet-transitifs”. Th`ese. Univ. Bordeaux I, 1995 (cit. on p. 117).
[84] G., Gauyacq.On quasi-Cayley graphs”. In: Discrete Appl. Math. 77 (1997), pp. 43–58 (cit. on p. 117).Google Scholar
[85] C. D., Godsil.More odd graph theory”. In: Discrete Math. 32 (1980), pp. 205– 207 (cit. on p. 122).Google Scholar
[86] C. D., Godsil.Neighborhoods of transitive graphs and GRRs”. In: J. Combin. Theory (Ser. B) 29 (1980), pp. 116–140 (cit. on p. 91).Google Scholar
[87] C. D., Godsil.The automorphism groups of some cubic Cayley graphs”. In: European J. Combin. 4.1 (1983), pp. 25–32 (cit. on p. 91).Google Scholar
[88] C. D., Godsil and W. L., Kocay.Constructing graphs with pairs of pseudosimilar vertices”. In: J. Combin. Theory (Ser. B) 32 (1982), pp. 146–155 (cit. on p. 91).Google Scholar
[89] C. D., Godsil and B. D., McKay. “Spectral conditions for the reconstructibility of a graph”. In: J. Combin. Theory (Ser. B) 30 (1981), pp. 285–289 (cit. on p. 148).Google Scholar
[90] C., Godsil and G., Royle.Algebraic Graph Theory. Springer-Verlag, 2001 (cit. on p. 17).
[91] D. L., Greenwell.Reconstructing graphs”. In: Proc. Amer.Math. Soc. 30 (1971), pp. 431–433 (cit. on p. 139).Google Scholar
[92] D. L., Greenwell and R. L., Hemminger. “Reconstructing graphs”. In: The Many Facets of Graph Theory. Ed. by G., Chartrand and S. F., Kapoor. Vol. 110. Lecture Notes in Mathematics. (Proc. of the conference held at Western Michigan University Kalamazoo Mich., 1968). Springer-Verlag, 1969, pp. 91–114 (cit. on p. 139).
[93] M., Gromov.Groups of polynomial growth and expanding maps”. In: Inst. Hautes Études Sci. Publ. Math. 53 (1981), pp. 53–73 (cit. on p. 63).Google Scholar
[94] G., Hahn and G., Sabidussi (Eds.) Graph Symmetry: Algebraic Methods and Applications. Kluwer Acad. Publ., 1997 (cit. on p. 17).
[95] G., Hahn and C., Tardif. “Homomorphisms of graphs”. In: Graph Symmetry: AlgebraicMethods and Applications. Ed. by G., Hahn and G., Sabidussi.Kluwer Acad. Publ., 1997, pp. 107–166 (cit. on p. 108).
[96] R., Hammack, W., Imrich, and S., Klavžar.Handbook of Product Graphs, Second Edition. Discrete Mathematics and Its Applications. Taylor & Francis, 2011 (cit. on p. 108).
[97] F., Harary.Graph Theory. Addison-Wesley, 1969 (cit. on p. 17).
[98] F., Harary and J., Lauri.The class-reconstruction number of maximal planar graphs”. In: Graphs and Combinatorics 3 (1987), pp. 45–53 (cit. on pp. 144, 147).Google Scholar
[99] F., Harary and J., Lauri.On the class-reconstruction number of trees”. In: Quart. J. Math. Oxford (2) 39 (1988), pp. 47–60 (cit. on pp. 144, 147).Google Scholar
[100] F., Harary and E. M., Palmer.A note on similar points and similar lines in a graph”. In: Rev. Roum. Math. Pures et Appl 10 (1965), pp. 1489–1492 (cit. on p. 91).Google Scholar
[101] F., Harary and E. M., Palmer.On similar points of a graph”. In: J. Math. Mech. 15 (1966), pp. 623–630 (cit. on p. 91).Google Scholar
[102] F., Harary and E. M., Palmer.On the problem of reconstructing a tournament from subtournaments”. In: Monatsh. Math. 71 (1967), pp. 14–23 (cit. on p. 136).Google Scholar
[103] F., Harary and E. M., Palmer.Graphical Enumeration. Academic Press, 1973 (cit. on pp. 10, 36, 38).
[104] F., Harary, A., Vince, and D., Worley. “A point-symmetric graph that is nowhere reversible”. In: Siam J. Alg. Disc. Meth. 3.3 (1982), pp. 285–287 (cit. on p. 91).Google Scholar
[105] D., Hetzel. “Ü ber reguläre graphische Darstellungen von auflösbaren Gruppen”. Diplomarbeit. Technische Universität Berlin, 1976 (cit. on p. 91).
[106] C. M., Hoffman. “Subcomplete generalisations of graph isomorphism”. In: J. Computer and System Sciences 25 (1982), pp. 332–359 (cit. on pp. 17, 63).Google Scholar
[107] D. F., Holt. “A graph which is edge transitive but not arc transitive”. In: J. Graph Theory 5 (1981), pp. 201–204 (cit. on pp. 47, 48).Google Scholar
[108] D. A., Holton and J., Sheehan.The Petersen Graph. Vol. 7. Australian Mathematical Society Lecture Series. Cambridge University Press, 1993 (cit. on pp. 62, 122).
[109] W., Imrich. “Graphs with transitive abelian automorphism group”. In: Combinatorial Theory and Its Applications II. Ed. by P., Erdös, A., Rényi, and V. T., Sós. Vol. 4. Colloq. Math. Soc. J. Bolyai. North-Holland, 1970, pp. 651–656 (cit. on pp. 89, 91).
[110] W., Imrich. “Assoziative Produkte von Graphen”. In: Osterreich Akad. Wiss. Math.-Natur. Kl. S.-B. 180.II (1972), pp. 203–239 (cit. on p. 108).Google Scholar
[111] W., Imrich. “On graphs and regular groups”. In: J. Combin. Theory (Ser. B) 19 (1975), pp. 174–180 (cit. on p. 91).Google Scholar
[112] W., Imrich. “Graphical regular representations of groups of odd order”. In: Combinatorics. Ed. by A., Hajnal and V. T., Sós. Vol. 18. Colloq. Math. Soc. J. Bolyai. North-Holland, 1976, pp. 611–622 (cit. on p. 91).
[113] W., Imrich and H., Izbichi. “Associative products of graphs”. In: Monatsh.Math. 80.4 (1975), pp. 277–281 (cit. on pp. 97, 108).Google Scholar
[114] W., Imrich and S., Klavžar. Product Graphs: Structure and Recognition. Wiley, 2000 (cit. on p. 108).
[115] W., Imrich and M. E., Watkins. “On graphical regular representations of cyclic extensions of groups”. In: Pacific J. Math. 55.2 (1974), pp. 461–477 (cit. on p. 91).Google Scholar
[116] W., Imrich and M. E., Watkins. “On automorphism groups of Cayley graphs”. In: Periodica Mathematica Hungarica 7.3–4 (1976), pp. 243–258 (cit. on p. 91).Google Scholar
[117] T. R., Jensen and B., Toft. Graph Coloring Problems. J. Wiley and Sons, 1995 (cit. on p. 105).
[118] I. N., Kagno. “Linear graphs of degree ≤ 6 and their groups”. In: Amer. J. Math. 68 (1946), pp. 505–520 (cit. on p. 59).Google Scholar
[119] W., Kantor. “k-Homogeneous graphs”. In: Math. Z. 124 (1972), pp. 261–265 (cit. on p. 114).Google Scholar
[120] P. J., Kelly. “A congruence theorem for trees”. In: Pacific J. Math. 7 (1957), pp. 961–968 (cit. on p. 140).Google Scholar
[121] R. J., Kimble, A. J., Schwenk, and P. K., Stockmeyer. “Pseudosimilar vertices in a graph”. In: J. Graph Theory 5 (1981), pp. 171–181 (cit. on p. 91).Google Scholar
[122] D. G., Kirkpatrick, M. M., Klawe, and D. G., Corneil. “On pseudosimilarity in trees”. In: J. Combin. Theory (Ser. B) 34 (1983), pp. 323–339 (cit. on p. 91).Google Scholar
[123] M. H., Klin and R., Pöschel. “The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings”. In: Algebraic Methods in Graph Theory. Ed. by L., Lovász and V. T., Sós. Vol. 25. Colloq. Math. Soc. J. Bolyai. North-Holland, 1981, pp. 405–430 (cit. on p. 122).
[124] M., Klin, J., Lauri, and M., Ziv-Av. “Links between two semisymmetric graphs on 112 vertices via association schemes”. In: J. Symbolic Comput. 47.10 (2012), pp. 1175–1191 (cit. on p. 38).Google Scholar
[125] M., Klin, C., Pech, S., Reichard, A., Woldar, and M., Ziv-Av. “Examples of computer experimentation in algebraic combinatorics”. In: Ars Math. Contemp. 3 (2010), pp. 237–258 (cit. on pp. 48, 77).Google Scholar
[126] J., Köbler, U., Schöning, and J., Torán. The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser, 1993 (cit. on pp. 14, 17, 139).
[127] W. L., Kocay. “On reconstructing spanning subgraphs”. In: Ars Combinatoria 11 (1981), pp. 301–313 (cit. on p. 156).Google Scholar
[128] W. L., Kocay. “Some new methods in reconstruction theory”. In: Combinatorial Mathematics IX. Ed. by E. J., Billington, S., Oates-Williams, and A. Penfold, Street. Vol. 952. Lecture Notes in Mathematics. (Proc. 9th Australian Conf. on Combinatorial Mathematics, Univ. of Queensland, Brisbane). Springer-Verlag, 1982, pp. 89–114 (cit. on p. 156).
[129] W. L., Kocay. “Attaching graphs to pseudosimilar vertices”. In: J. Austral. Math. Soc. (Ser. A) 36 (1984), pp. 53–58 (cit. on p. 91).Google Scholar
[130] W. L., Kocay. “On Stockmeyer's non-reconstructible tournaments”. In: J. Graph Theory 9 (1985), pp. 473–476 (cit. on p. 137).Google Scholar
[131] W. L., Kocay. “Graphs & groups, a Macintosh application for graph theory”. In: J. Combin. Maths. and Combin. Comput. 3 (1988), pp. 195–206 (cit. on pp. 14, 17, 63, 139).Google Scholar
[132] A. D., Korshunov. “Number of nonisomorphic graphs in an n-point graph”. In: Math. Notes of the Acad. USSR 9 (1971), pp. 155–160 (cit. on p. 38).Google Scholar
[133] I., Krasikov, A., Lev, and B. D., Thatte. “Upper bounds on the automorphism group of a graph”. In: Discrete Math. 256.1-2 (2002), pp. 489–493 (cit. on p. 169).Google Scholar
[134] D., Kratsch and L. A., Henaspaandra. “On the complexity of graph reconstruction”. In: Math. Systems Theory 27.3 (1994), pp. 257–273 (cit. on p. 139).Google Scholar
[135] V., Krishnamoorthy and K. R., Parthasarathy. “Cospectral graphs and digraphs with given automorphism group”. In: J. Combin. Theory (Ser. B) 19 (1975), pp. 204–213 (cit. on p. 91).Google Scholar
[136] J., Lauri. “The reconstruction of maximal planar graphs, II: Reconstruction”. In: J. Combin. Theory (Ser. B.) v (1981), pp. 196–214 (cit. on pp. 136, 139).Google Scholar
[137] J., Lauri. “Endvertex-deleted subgraphs”. In: Ars Combinatoria 36 (1993), pp. 171–182 (cit. on pp. 91, 169).Google Scholar
[138] J., Lauri. “Pseudosimilarity in graphs—A survey”. In: Ars Combinatoria 36 (1997), pp. 171–182 (cit. on p. 91).Google Scholar
[139] J., Lauri. “Constructing graphs with several pseudosimilar vertices or edges”. In: Discrete Math. 267.1-3 (2003). Combinatorics 2000 (Gaeta), pp. 197–211 (cit. on p. 91).Google Scholar
[140] J., Lauri. “The Reconstruction Problem”. In: Handbook of Graph Theory. Ed. by J. L., Gross, J., Yellen, and P., Zhang. Discrete Mathematics and Its Applications. 2014 (cit. on p. 123).
[141] J., Lauri, R., Mizzi, and R., Scapellato. “Two-fold orbital digraphs and other constructions.” In: International J. of Pure and Applied Math. 1 (2004), pp. 63–93 (cit. on p. 108).Google Scholar
[142] J., Lauri, R., Mizzi, and R., Scapellato. “Two-fold automorphisms of graphs.” In: Australasian J. Combinatorics. 49 (2011), pp. 165–176 (cit. on p. 108).Google Scholar
[143] J., Lauri, R., Mizzi, and R., Scapellato. “A generalisation of isomorphisms with applications.” Preprint. 2014 (cit. on pp. 103, 104, 108).
[144] J., Lauri, R., Mizzi, and R., Scapellato. “A smallest unstable asymmetric graph and an infinite family of asymmetric graphs with arbitrarily large instability index”. Preprint. 2015 (cit. on p. 108).
[145] J., Lauri, R., Mizzi, and R., Scapellato. “Unstable graphs: A fresh outlook via TFautomorphisms”. In: Ars Mathematica Contemporanea 8.1 (2015), pp. 115–131 (cit. on p. 108).Google Scholar
[146] J., Lauri and R., Scapellato. “A note on graphs all of whose edges are pseudosimilar”. In: Graph Theory Notes of New York 21 (1996), pp. 11–13 (cit. on p. 91).Google Scholar
[147] W., Lederman and A. J., Weir. Introduction to Group Theory (2nd Ed.)Longman, 1996 (cit. on pp. 7, 17).
[148] Cai Heng, Li. “The solution of a problem of Godsil on cubic Cayley graphs”. In: J. Combin. Theory Ser. B 72.1 (1998), pp. 140–142 (cit. on p. 91).Google Scholar
[149] D., Livingstone and A., Wagner. “Transitivity of finite permutation groups”. In: Math. Z. 90 (1965), pp. 393–403 (cit. on pp. 114, 115).Google Scholar
[150] L., Lovász. “Unsolved problem II”. In: Combinatorial Structures and Their Applications. Ed. by R., Guy, H., Hanani, N., Sauer, and J., Schonheim. Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications, 1969. Gordan and Breach, 1970 (cit. on p. 62).
[151] L., Lovász. “A note on the line reconstruction problem”. In: J. Combin. Theory (Ser. B) 13 (1972), pp. 309–310 (cit. on p. 169).Google Scholar
[152] L., Lovász. “Some problems of graph theory”. In: Matematikus Kurir (1983) (cit. on p. 169).Google Scholar
[153] L., Lovász. Combinatorial Problems and Exercises. Second ed. North-Holland Publishing Co., Amsterdam, 1993 (cit. on p. 138).
[154] M., Lovrečič-Saražin. “A note on the generalized Petersen graphs that are also Cayley graphs”. In: J. Comb. Theory (Ser. B) 69 (1997), pp. 189–192 (cit. on pp. 111, 122).Google Scholar
[155] E. M., Luks. “Isomorphism of graphs of bounded valence can be tested in polynomial time”. In: J. Computer and System Sciences 25 (1982), pp. 42–65 (cit. on p. 17).Google Scholar
[156] M., Mačaj and J., Širáň. “Search for properties of the missing Moore graph”. In: Linear Alg. and Applics. 432 (2010), pp. 2381–2389 (cit. on p. 77).Google Scholar
[157] D., Macpherson. “The action of an infinite permutation group on the unordered subsets of a set”. In: Proc. London Math. Soc. 46.3 (1983), pp. 471–486 (cit. on p. 63).Google Scholar
[158] D., Macpherson. “Growth rates in infinite graphs and permutation groups”. In: Proc. London Math. Soc. 51.3 (1985), pp. 285–294 (cit. on p. 63).Google Scholar
[159] W., Magnus, A., Karrass, and D., Solitar. Combinatorial group theory. Second ed. Presentations of groups in terms of generators and relations. Dover Publications, 2004 (cit. on p. 7).
[160] A., Malnič, D., Marušič, P., Potočnik, and C., Wang. “An infinite family of cubic edge- but not vertex-transitive graphs”. In: Discrete Math. 280.1-3 (2004), pp. 133–148 (cit. on p. 20).Google Scholar
[161] B., Manvel. “Reconstruction of trees”. In: Canadian J. Math. 22 (1970), pp. 55–60 (cit. on p. 148).Google Scholar
[162] B., Manvel. “On reconstructing graphs from their sets of subgraphs”. In: J. Combin. Theory (Ser. B) 21 (1976), pp. 156–165 (cit. on pp. 139, 148).Google Scholar
[163] D., Marušič. “Cayley properties of vertex symmetric graphs”. In: Ars Combin. 16B (1983), pp. 297–302 (cit. on p. 62).Google Scholar
[164] D., Marušič. “Hamiltonian circuits in Cayley graphs”. In: Discrete Math. 46 (1983), pp. 49–54 (cit. on p. 62).Google Scholar
[165] D., Marušič. “On vertex-transitive graphs of order qp”. In: J. Combin. Math. Combin. Comput. 4 (1988), pp. 97–114 (cit. on p. 116).Google Scholar
[166] D., Marušič and T., Pisanski. “The Gray graph revisited”. In: J. Graph Theory 35.1 (2000), pp. 1–7 (cit. on p. 21).Google Scholar
[167] D., Marušič and R., Scapellato. “A class of non-Cayley vertex-transitive graphs associated with PSL(2, p)”. In: Discrete Math. 109 (1992), pp. 161–170 (cit. on p. 122).Google Scholar
[168] D., Marušič and R., Scapellato. “Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup”. In: J. Graph Theory 16 (1992), pp. 375–387 (cit. on p. 122).Google Scholar
[169] D., Marušič and R., Scapellato. “Imprimitive representations of SL(2, 2k)”. In: J. Combin. Theory (Ser. B) 58 (1993), pp. 46–57 (cit. on pp. 116, 122).Google Scholar
[170] D., Marušič and R., Scapellato. “A class of graphs arising from the action of PSL(2, q2) on cosets of PGL(2, q)”. In: Discrete Math. 134 (1994), pp. 99–110 (cit. on p. 122).Google Scholar
[171] D., Marušič and R., Scapellato. “Classification of vertex-transitive pq-digraphs”. In: Atti Ist. Lombardo (Rend. Sci.) A-128.1 (1994), pp. 31–36 (cit. on p. 122).Google Scholar
[172] D., Marušič and R., Scapellato. “Classifying vertex-transitive graphs whose order is a product of two primes”. In: Combinatorica 14.2 (1994), pp. 187–201 (cit. on p. 122).Google Scholar
[173] D., Marušič and R., Scapellato. “Permutation groups with conjugacy complete stabilizer”. In: Discrete Math. 134 (1994), pp. 93–98 (cit. on p. 122).Google Scholar
[174] D., Marušič and R., Scapellato. “Permutation groups, vertex-transitive digraphs and semi-regular automorphisms”. In: Europ. J. Combinatorics 19 (1998), pp. 707–712 (cit. on p. 115).Google Scholar
[175] D., Marušič, R., Scapellato, and N. Zagaglia, Salvi. “A characterization of particular symmetric (0, 1) matrices”. In: Linear Algebra Appl. 119 (1989), pp. 153– 162 (cit. on pp. 102, 108).Google Scholar
[176] D., Marušič, R., Scapellato, and N. Zagaglia, Salvi. “Generalized Cayley graphs”. In: Discrete Math. 102.3 (1992). URL: http://dx.doi.org/10.1016/ 0012-365X(92)90121-U, pp. 279–285 (cit. on pp. 103, 108, 119, 120).Google Scholar
[177] D., Marušič, R., Scapellato, and B., Zgrablič. “On quasiprimitive pqr-graphs.” In: Algebra Colloq. 2.4 (1995), pp. 295–314 (cit. on p. 116).Google Scholar
[178] P., Maynard. “On Orbit Reconstruction Problems”. PhD thesis. UEA, Norwich, 1996 (cit. on p. 169).
[179] P., Maynard and J., Siemons. “On the reconstruction index of permutation groups: semiregular groups”. In: Aequationes Math. 64.3 (2002), pp. 218–231 (cit. on p. 169).Google Scholar
[180] P., Maynard and J., Siemons. “On the reconstruction index of permutation groups: general bounds”. In: AequationesMath. 70.3 (2005), pp. 225–239 (cit. on p. 169).Google Scholar
[181] B. D., McKay and A., Piperno. “Practical graph isomorphism, {II}”. In: Journal of Symbolic Computation 60 (2014). URL: www.sciencedirect.com/ science/article/pii/S0747717113001193, pp. 94–112 (cit. on pp. 15, 17).Google Scholar
[182] B. D., McKay and C. E., Praeger. “Vertex-transitive graphs that are not Cayley graphs I”. In: J. Austral. Math. Soc. (Ser. A) 56 (1994), pp. 53–63 (cit. on p. 62).Google Scholar
[183] B. D., McKay and C. E., Praeger. “Vertex-transitive graphs that are not Cayley graphs II”. In: J. Graph Theory 22.4 (1996), pp. 321–324 (cit. on p. 62).Google Scholar
[184] J., Meier. Groups, Graphs and Trees: An Introduction to the Geometry of Infinite Groups. Vol. 73. London Mathematical Society Student Texts. Cambridge, 2008 (cit. on p. 63).
[185] J., Meng and M., Xu. “Automorphisms of groups and isomorphisms of Cayley digraphs”. In: Australasian J. Combin. 12 (1995), pp. 93–100 (cit. on p. 91).Google Scholar
[186] J., Milnor. “A note on curvature and finite groups”. In: J. Diff. Geom. 2 (1968), pp. 1–7 (cit. on p. 63).Google Scholar
[187] J., Milnor. “Growth of finitely generated solvable groups”. In: J. Diff. Geom. 2 (1968), pp. 447–449 (cit. on p. 63).Google Scholar
[188] V. B., Mnukhin. “Reconstruction of k-orbits of a permutation group”. In: Math. Notes 42 (1987), pp. 975–980 (cit. on p. 169).Google Scholar
[189] V. B., Mnukhin. “The k-orbit reconstruction and the orbit algebra”. In: Acta Applic. Math. 29 (1992), pp. 83–117 (cit. on p. 169).Google Scholar
[190] V. B., Mnukhin. “The reconstruction of oriented necklaces”. In: J. Combin., Inf. & Sys. Sciences 20.1–4 (1995), pp. 261–272 (cit. on p. 169).Google Scholar
[191] V. B., Mnukhin. “The k-orbit reconstruction for abelian and Hamiltonian groups”. In: Acta Applic. Math. 52 (1998), pp. 149–162 (cit. on p. 169).Google Scholar
[192] R., Molina. “Correction of a proof on the ally-reconstruction number of a disconnected graph. Correction to: “The ally-reconstruction number of a disconnected graph” [Ars Combin. 28 (1989), 123–127; MR1039138 (90m:05094)] by W. J. Myrvold”. In: Ars Combin. 40 (1995), pp. 59–64 (cit. on p. 143).
[193] R., Molina. “The edge reconstruction number of a disconnected graph”. In: J. Graph Theory 19.3 (1995), pp. 375–384 (cit. on p. 143).Google Scholar
[194] A., Mowshowitz. “The group of a graph whose adjacency matrix has all distinct eigenvalues”. In: Proof Techniques in Graph Theory. Ed. by F., Harary. Academic Press, 1969, pp. 109–110 (cit. on p. 38).
[195] A., Mowshowitz. “The adjacency matrix and the group of a graph”. In: New Directions in the Theory of Graphs. Ed. by F., Harary. Academic Press, 1973 (cit. on p. 38).
[196] V., Müller. “Probabilistic reconstruction from subgraphs”. In: Comment. Math. Univ. Carolinae 17 (1976), pp. 709–719 (cit. on pp. 38, 169).Google Scholar
[197] M., Muzychuk. “Ádám's conjecture is true in the square-free case”. In: J. Combin. Theory (Ser. A) 72 (1995), pp. 118–134 (cit. on p. 122).Google Scholar
[198] M., Muzychuk. “On Ádám's conjecture for circulant graphs”. In: DiscreteMath. 176 (1997), pp. 285–298 (cit. on p. 122).Google Scholar
[199] M., Muzychuk and M., Klin. “On graphs with three eigenvalues”. In: Discrete Math. 189.1-3 (1998), pp. 191–207 (cit. on p. 73).Google Scholar
[200] W., Myrvold. “Ally and Adversary Reconstruction Problems”. PhD thesis. University of Waterloo, Ontario, Canada, 1988 (cit. on pp. 142, 144, 148).
[201] W. J., Myrvold. “The ally-reconstruction number of a disconnected graph”. In: Ars Combin. 28 (1989), pp. 123–127 (cit. on p. 143).Google Scholar
[202] W. J., Myrvold. “The ally-reconstruction number of a tree with five or more vertices is three”. In: J. Graph Theory 14 (1990), pp. 149–166 (cit. on pp. 144, 147).Google Scholar
[203] C. St. J. A., Nash-Williams. “The reconstruction problem”. In: Selected Topics in Graph Theory. Ed. by L. W., Beineke and R. J., Wilson. Academic Press, 1978. Chap. 8 (cit. on pp. 123, 169).Google Scholar
[204] R., Nedela and M., Škoviera. “Which generalized Petersen graphs are Cayley graphs?” In: J. Graph Theory 19 (1995), pp. 1–11 (cit. on pp. 111, 122).Google Scholar
[205] E. D., Nering. Linear Algebra and Matrix Theory. John Wiley & Sons, 1970 (cit. on p. 77).
[206] J., Nešestřil and V., Rödl. “Products of graphs and their applications”. In: Lecture Notes in Mathematics 1018. Ed. by J.W., Kennedy, M., Borowiechki and M. M., Syslo. Springer-Verlag, 1983, pp. 151–160 (cit. on p. 105).
[207] R. J., Nowakawski and D. F., Hall. “Associative products and their independence, domination and coloring numbers”. In: Discuss. Math. Graph Theory 16.1 (1996), pp. 53–79 (cit. on p. 108).Google Scholar
[208] L. A., Nowitz and M. E., Watkins. “Graphical regular representations of nonabelian groups, I”. In: Canadian J. Math XXIV.6 (1972), pp. 993–1008 (cit. on p. 91).Google Scholar
[209] L. A., Nowitz and M. E., Watkins. “Graphical regular representations of nonabelian groups, II”. In: Canadian J. Math XXIV.6 (1972), pp. 1009–1018 (cit. on p. 91).Google Scholar
[210] V., Nýdl. “Some results concerning reconstruction conjecture”. In: Proceedings of the 12th winter school on abstract analysis (Srní, 1984). Suppl. 6. 1984, pp. 243–246 (cit. on p. 138).Google Scholar
[211] V., Nýdl. “A note on reconstructing of finite trees from small subtrees”. In: Acta Univ. Carolin. Math. Phys. 31.2 (1990). 18th Winter School on Abstract Analysis (Srní, 1990), pp. 71–74 (cit. on p. 138).Google Scholar
[212] O., Ore. Theory of Graphs. American Mathematical Society, 1962 (cit. on p. 94).
[213] W., Pacco and R., Scapellato. “Digraphs having the same canonical double covering”. In: Discrete Math. 173 (1997), pp. 291–296 (cit. on pp. 106, 108).Google Scholar
[214] M., Petersdorf and H., Sachs. “Spectrum und Automorphismengruppe eines Graphen”. In: Combinatorial Theory and Its Applications. Vol. III. North- Holland, 1969, pp. 891–907 (cit. on p. 38).
[215] L., Porcu. “Sul raddoppio di un grafo”. In: Att. Ist. Lombardo (Rend. Sci.) A.110 (1976), pp. 353–360 (cit. on p. 108).Google Scholar
[216] M., Pouzet. “Application de la notion de relation presquenchaînable au dńombrement des restrictions finies d'une relation”. In: Z. Math. Logik Grundl. Math. 27 (1981), pp. 289–332 (cit. on p. 63).Google Scholar
[217] L., Pyber. “The edge-reconstruction of Hamiltonian graphs”. In: J. Graph Theory 14 (1990), pp. 173–179 (cit. on p. 169).Google Scholar
[218] A. J., Radcliffe and A. D., Scott. “Reconstructing subsets of Zn”. In: J. Combin. Theory (Ser. A) 83.2 (1998), pp. 169–187 (cit. on p. 169).Google Scholar
[219] A. J., Radcliffe and A. D., Scott. “Reconstructing subsets of reals”. In: Electron. J. Combin. 1 (1999), Research Paper 20 (cit. on p. 169).Google Scholar
[220] S., Ramachandran. “N-reconstructibility of nonreconstructible digraphs”. In: Discrete Math. 46.3 (1983), pp. 279–294 (cit. on p. 137).Google Scholar
[221] S., Ramachandran. “Reconstruction number for Ulam's conjecture”. In: Ars Combin. 78 (2006), pp. 289–296 (cit. on p. 144).Google Scholar
[222] J. J., Rotman. An Introduction to the Theory of Groups (4th Ed.)Springer- Verlag, 1995 (cit. on pp. 7, 17).
[223] G., Sabidussi. “On the minimum order of graphs with a given automorphism group”. In: Monatsh. Math. 63 (1959), pp. 124–127 (cit. on p. 62).Google Scholar
[224] G., Sabidussi. “Graph multiplication”. In: Math. Z. 72 (1960), pp. 446–457 (cit. on p. 108).Google Scholar
[225] G., Sabidussi. “Vertex transitive graphs”. In: Monat. Math. 68 (1964), pp. 426– 438 (cit. on p. 122).Google Scholar
[226] H., Sachs. “Ü ber Teiler, Faktoren und characterische Polynome von Graphen II”. In: Wiss. Z. Techn. Hosch. Ilmenau 13 (1967), pp. 405–412 (cit. on p. 77).Google Scholar
[227] W. A., Stein et al. Sage Mathematics Software (Version 6.3). www.sagemath.org. The Sage Development Team. 2014 (cit. on p. 15).
[228] R., Scapellato. “On F-geodetic graphs”. In: Discrete Math. 80 (1990), pp. 313– 325 (cit. on p. 38).Google Scholar
[229] R., Scapellato. “A characterization of bipartite graphs associated with BIBdesigns with”. In: Discrete Math. 112 (1993), pp. 283–287 (cit. on p. 38).Google Scholar
[230] R., Scapellato. “Vertex-transitive graphs and digraphs”. In: Graph Symmetry: AlgebraicMethods and Applications. Ed. by G., Hahn and G., Sabidussi. Kluwer Acad. Publ., 1997, pp. 319–378 (cit. on pp. 106, 116, 122).
[231] A. J., Schwenk. “Spectral reconstruction problems”. In: Topics in Graph Theory. Ed. by F., Harary. Vol. 328. Annals New York Academy of Sciences. New York Academy of Sciences, 1979, pp. 183–189 (cit. on p. 148).
[232] I., Sciriha. “Polynomial reconstruction and terminal vertices”. In: Linear Algebra Appl. 356 (2002). Special issue on algebraic graph theory (Edinburgh, 2001), pp. 145–156 (cit. on p. 148).Google Scholar
[233] A., Seress. “On vertex-transitive, non-Cayley graphs of order pqr”. In: Discrete Math. 182 (1998), pp. 279–292 (cit. on p. 62).Google Scholar
[234] Y., Shibata and Y., Kikuchi. “Graph products based on distance in graphs”. In: IEICE Trans. Fundamentals E83-A.3 (2000), pp. 459–464 (cit. on p. 108).Google Scholar
[235] L. H., Soicher. “GRAPE: a system for computing with graphs and groups”. In: Groups and Computation. Ed. by L., Finkelstein and W.M., Kantor. Vol. 11. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1993, pp. 287–291 (cit. on pp. 15, 17).
[236] T., Spence. Strongly Regular Graphs on at Most 64 Vertices. URL: www.maths.glaac.uk/~es/srgraphs.php (cit. on p. 78).
[237] P. K., Stockmeyer. “The falsity of the reconstruction conjecture for tournaments”. In: J. Graph Theory 1 (1977), pp. 19–25 (cit. on p. 137).Google Scholar
[238] P. K., Stockmeyer. “Tilting at windmills or my quest for non-recon structible graphs”. In: Congressus Numerantium 63 (1988), pp. 188–200 (cit. on p. 137).Google Scholar
[239] D. B., Surowski. “Stability of arc-transitive graphs”. In: J. Graph Theory 38.2 (2001), pp. 95–110 (cit. on p. 108).Google Scholar
[240] D. B., Surowski. “Unexpected symmetries in unstable graphs”. In: J. Graph Theory 38 (2001), pp. 95–110 (cit. on p. 108).Google Scholar
[241] D. B., Surowski. “Automorphism groups of certain unstable graphs”. In: Math. Slovaca 53.3 (2003), pp. 215–232 (cit. on p. 108).Google Scholar
[242] R. G., Swan. “A simple proof of Rankin's campanological theorem”. In: Amer. Math. Monthly 106 (1999), pp. 159–161 (cit. on p. 62).Google Scholar
[243] The GAP Group. GAP—Groups, Algorithms and Programming, Version 4.1. www-gap.dcs.st-and.ac.uk/ gap: Aachen, St. Andrews, 1999 (cit. on pp. 15, 17).
[244] R. M., Thomas. “Cayley graphs and group representations”. In: Math. Proc. Camb. Philos. Soc. 103 (1988), pp. 385–387 (cit. on p. 62).Google Scholar
[245] C., Thomassen. “A characterisation of locally finite vertex-transitive graphs”. In: J. Combin. Theory (Ser. B) 43 (1987), pp. 116–119 (cit. on p. 91).Google Scholar
[246] V. I., Trofimov. “Graphs with polynomial growth”. In: Math. USSR Sbornik. 59 (1985), pp. 405–417 (cit. on p. 63).Google Scholar
[247] V. I., Trofimov. “On the action of a group on a graph”. In: Acta. Appl. Math. 29 (1992), pp. 161–170 (cit. on p. 63).Google Scholar
[248] J., Turner. “Point-symmetric graphs with a prime number of points”. In: J. Combin. Theory 3 (1967), pp. 136–145 (cit. on p. 122).Google Scholar
[249] W. T., Tutte. “A family of cubical graphs”. In: Proc. Cambridge Philos. Soc. 43 (1947), pp. 26–40 (cit. on p. 38).Google Scholar
[250] W. T., Tutte. Connectivity in Graphs. Toronto University Press, 1966 (cit. on p. 38).
[251] W. T., Tutte. “All the king's horses—a guide to reconstruction”. In: Graph Theory and Related Topics. Ed. by J. A., Bondy and U. S. R., Murty. Academic Press, 1979 (cit. on p. 156).
[252] J. H., van Lint and R. M., Wilson. A Course in Combinatorics. Cambridge University Press, 2001 (cit. on p. 148).
[253] M. E., Watkins. “Connectivity of transitive graphs”. In: J. Combin. Theory 8 (1970), pp. 23–29 (cit. on p. 60).Google Scholar
[254] M. E., Watkins. “Ends and automorphisms of infinite graphs”. In: Graph Symmetry: Algebraic Methods and Its Applications. Ed. by G., Hahn and G., Sabidussi. Kluwer Acad. Publ., 1997, pp. 379–414 (cit. on pp. 63, 77).
[255] R., Weiss. “The non-existence of 8-transitive graphs”. In: Combinatorica 1 (1983), pp. 309–311 (cit. on p. 38).Google Scholar
[256] M., Welhan. “Reconstructing trees from two cards”. In: J. Graph Theory 63 (2010), pp. 243–257 (cit. on p. 144).Google Scholar
[257] D. B., West. Introduction to Graph Theory. Prentice-Hall, 1996 (cit. on pp. 3, 17).
[258] H., Whitney. “Congruent graphs and the connectivity of graphs”. In: Amer. J. Math. 54 (1932), pp. 150–168 (cit. on pp. 12, 139).Google Scholar
[259] R. J., Wilson. Introduction to Graph Theory. Longman, 1997 (cit. on pp. 3, 17).
[260] S., Wilson. “Unexpected symmetries in unstable graphs”. In: J. Combinatorial Theory B.98 (2005), pp. 359–383 (cit. on p. 108).Google Scholar
[261] D., Witte and J., Gallian. “A survey: Hamiltonian cycles in Cayley graphs”. In: Discrete Math. 51 (1984), pp. 293–304 (cit. on p. 62).Google Scholar
[262] J. A., Wolf. “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”. In: J. Diff. Geom. 2 (1968), pp. 421–446 (cit. on p. 63).Google Scholar
[263] M. Y., Xu. “Automorphism groups and isomorphisms of Cayley digraphs”. In: Discrete Math. 182 (1998), pp. 309–319 (cit. on p. 91).Google Scholar
[264] Mingyao, Xu and Shangjin, Xu. “Symmetry properties of Cayley graphs of small valencies on the alternating group A5”. In: Sci. China Ser. A 47.4 (2004), pp. 593–604 (cit. on p. 91).Google Scholar
[265] H., Yuan. “An eigenvector condition for reconstructibility”. In: J. Combin. Theory (Ser. B) 32 (1982), pp. 245–256 (cit. on p. 148).Google Scholar
[266] Y., Zhao. “On the edge reconstruction of graphs embedded in surfaces. III”. In: J. Combin. Theory (Ser. B) 74 (1998), pp. 302–310 (cit. on p. 139).Google Scholar
[267] A. A., Zykov. Fundamentals of Graph Theory. Translated from the Russian and edited by L., Boron, C., Christenson and B., Smith.Moscow, ID: BCS Associates, 1990 (cit. on pp. 99, 108).

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Josef Lauri, University of Malta, Raffaele Scapellato, Politecnico di Milano
  • Book: Topics in Graph Automorphisms and Reconstruction
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316669846.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Josef Lauri, University of Malta, Raffaele Scapellato, Politecnico di Milano
  • Book: Topics in Graph Automorphisms and Reconstruction
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316669846.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Josef Lauri, University of Malta, Raffaele Scapellato, Politecnico di Milano
  • Book: Topics in Graph Automorphisms and Reconstruction
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316669846.014
Available formats
×