Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Part I Lectures on Basics with Examples
- 1 A First Example: Optimal Quadratic Control
- 2 Dynamical Systems
- 3 LTV (Quasi-separable) Systems
- 4 System Identification
- 5 State Equivalence, State Reduction
- 6 Elementary Operations
- 7 Inner Operators and External Factorizations
- 8 Inner−Outer Factorization
- 9 The Kalman Filter as an Application
- 10 Polynomial Representations
- 11 Quasi-separable Moore−Penrose Inversion
- Part II Further Contributions to Matrix Theory
- Appendix: Data Model and Implementations
- References
- Index
1 - A First Example: Optimal Quadratic Control
from Part I - Lectures on Basics with Examples
Published online by Cambridge University Press: 24 October 2024
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Part I Lectures on Basics with Examples
- 1 A First Example: Optimal Quadratic Control
- 2 Dynamical Systems
- 3 LTV (Quasi-separable) Systems
- 4 System Identification
- 5 State Equivalence, State Reduction
- 6 Elementary Operations
- 7 Inner Operators and External Factorizations
- 8 Inner−Outer Factorization
- 9 The Kalman Filter as an Application
- 10 Polynomial Representations
- 11 Quasi-separable Moore−Penrose Inversion
- Part II Further Contributions to Matrix Theory
- Appendix: Data Model and Implementations
- References
- Index
Summary
The book starts out with a motivating chapter to answer the question: Why is it worthwhile to develop system theory? To do so, we jump fearlessly in the very center of our methods, using a simple and straight example in optimization: optimal tracking. Although optimization is not our leading subject– which is system theory– it provides for one of the main application areas, namely the optimization of the performance of a dynamical system in a time-variant environment (for example, driving a car or sending a rocket to the moon). The chapter presents a recursive matrix algebra approach to the optimization problem, known as dynamic programming. Optimal tracking is based on a powerful principle called “dynamic programming,” which lies at the very basis of what ”dynamical” means.
- Type
- Chapter
- Information
- Time-Variant and Quasi-separable SystemsMatrix Theory, Recursions and Computations, pp. 3 - 20Publisher: Cambridge University PressPrint publication year: 2024