Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T00:00:28.676Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  19 December 2024

Oliver Linton
Affiliation:
University of Cambridge
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica, 71(6), 17951843.CrossRefGoogle Scholar
Aït-Sahalia, Y. (1996). Nonparametric pricing of interest rate derivative securities. Econometrica, 64(3), 527560.CrossRefGoogle Scholar
Aït-Sahalia, Y. and Jacod, J. (2014). High-Frequency Financial Econometrics. Princeton University Press.Google Scholar
Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2011). Ultra high frequency volatility estimation with dependent microstructure noise. Journal of Econometrics, 160(1), 160175.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716723.CrossRefGoogle Scholar
Almon, S. (1965). The distributed lag between capital appropriations and expenditures. Econometrica, 33(1), 178196.CrossRefGoogle Scholar
Amemiya, T. (1985). Advanced Econometrics. Harvard University Press.Google Scholar
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The distribution of realized exchange rate volatility. Journal of the American Statistical Association, 96(453), 4255.CrossRefGoogle Scholar
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579626.CrossRefGoogle Scholar
Andrews, D. W. K. (1984). Non-strong mixing autoregressive processes. Journal of Applied Probability, 21(4), 930934.CrossRefGoogle Scholar
Andrews, D. W. K. (1991a). Asymptotic normality of series estimators for nonparametric and semiparametric regression models. Econometrica, 59(2), 307346.CrossRefGoogle Scholar
Andrews, D. W. K. (1991b). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3), 817858.CrossRefGoogle Scholar
Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica, 61(4), 821856.CrossRefGoogle Scholar
Andrews, D. W. K. (1994). Empirical process method in econometrics. In Engle, R. F. and McFadden, D. L. (eds), Handbook of Econometrics, Vol. IV. North Holland, Amsterdam.Google Scholar
Andrews, D. W. K. and Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62(6), 13831414.CrossRefGoogle Scholar
Andrews, D. W. K. and Whang, Y.-J. (1990). Additive and interactive regression models: Circumvention of the curse of dimensionality. Econometric Theory, 6(4), 466479.CrossRefGoogle Scholar
Ansley, C. F., Kohn, R., and Wong, C. (1993). Nonparametric spline regression with prior information. Biometrika, 80(1), 7588.CrossRefGoogle Scholar
Baba, Y., Engle, R. F., Kraft, D. F., and Kroner, K. F. (1990). Multivariate simultaneous generalized ARCH. Mimeo, Department of Economics, University of California, San Diego.Google Scholar
Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica, 71(1), 135171. doi:10.1111/1468-0262.00392CrossRefGoogle Scholar
Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica, 70(1), 191221.CrossRefGoogle Scholar
Baillie, R. T., Bollerslev, T., and Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 330.CrossRefGoogle Scholar
Ball, R. and Watts, R. (1972). Some time series properties of accounting income. Journal of Finance, 27(3), 663681.CrossRefGoogle Scholar
Bampinas, G., Ladopoulos, K., and Panagiotidis, T. (2018). A note on the estimated GARCH coefficients from the S&P1500 universe. Applied Economics, 50(34–35), 36473653.CrossRefGoogle Scholar
Bandi, F. M. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica, 71(1), 241283.CrossRefGoogle Scholar
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica, 76(6), 14811536. doi:10.3982/ECTA6495Google Scholar
Barndorff-Nielsen, O. and Shephard, N. (2002). Econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, Series B, 64(2), 253280.CrossRefGoogle Scholar
Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, 14, 115133. doi:10.1007/BF00993164CrossRefGoogle Scholar
Bartlett, M. S. (1948). Smoothing periodograms from time-series with continuous spectra. Nature, 161(4096), 686687.CrossRefGoogle Scholar
Bartlett, M. S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37(1/2), 116.CrossRefGoogle ScholarPubMed
Baumol, W. J. and Benhabib, J. (1989). Chaos: Significance, mechanism, and economic applications. Journal of Economic Perspectives, 3(1), 77105.CrossRefGoogle Scholar
Bauwens, L., Laurent, S., and Rombouts, J. V. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21(1), 79109. doi:10.1002/jae.842CrossRefGoogle Scholar
Baxter, M. and King, R. G. (1995). Measuring business cycles: Approximate band-pass filters for economic time series. NBER Working Paper 5022. National Bureau of Economic Research, Cambridge, MA.Google Scholar
Bell, W. R. and Hillmer, S. C. (1984). Issues involved with the seasonal adjustment of economic time series. Journal of Business & Economic Statistics, 2(4), 291320.CrossRefGoogle Scholar
Belloni, A., Chernozhukov, V., and Hansen, C. (2014). Inference on treatment effects after selection amongst high-dimensional controls. Review of Econonomic Studies, 81(2), 608650.CrossRefGoogle Scholar
Bergstrom, A. R. (1984). Continuous time stochastic models and issues of aggregation over time. In Griliches, Z. and Intriligator, M. D. (eds), Handbook of Econometrics, Vol. II. North Holland, Amsterdam.Google Scholar
Bergstrom, A. R. and Nowman, B. (2007). A Continuous Time Econometric Model of the United Kingdom with Stochastic Trends. Cambridge University Press.CrossRefGoogle Scholar
Bernanke, B. (2024). Forecasting for monetary policy making and communication at the Bank of England: A review. Available at www.bankofengland.co.uk/independent-evaluation-office/forecasting-for-monetary-policy-making-and-communication-at-the-bank-of-england-a-review.Google Scholar
Beveridge, W. H. (1921). Weather and harvest cycles. Economics Journal, 31(124), 429452.Google Scholar
Biau, G. and Devroye, L. (2015). Lectures on the Nearest Neighbor Method. Springer, Berlin.CrossRefGoogle Scholar
Bickel, P. J. and Bühlmann, P. (1997). Closure of linear processes. Journal of Theoretical Probability, 10, 445479.CrossRefGoogle Scholar
Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Annals of Statistics, 9(6), 11961217.CrossRefGoogle Scholar
Bickel, P. J., Klaassen, C. A. J., Ritov, Y., and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore, MA.Google Scholar
Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4), 17051732. doi:10.1214/08-AOS620CrossRefGoogle Scholar
Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637654. doi:10.1086/260062.CrossRefGoogle Scholar
Blanchard, O. J. and Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. The American Economic Review, 79(4), 655673.Google Scholar
Blanchard, O. J. and Watson, M. W. (1982). Bubbles, rational expectations and financial markets. In Wachtel, P. (ed), Crises in the Economic and Financial Structure. Heath and Company, Lexington, MA.Google Scholar
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307327.CrossRefGoogle Scholar
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Review of Economics and Statistics, 72(3), 498505.CrossRefGoogle Scholar
Bollerslev, T., Engle, R. F., and Nelson, D. (1994). ARCH models. In McFadden, D. F. and Engle, R. F. (eds), Handbook of Econometrics, Vol. IV. North Holland, Amsterdam.Google Scholar
Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances, Journal of Political Economy, 96(1), 116131.CrossRefGoogle Scholar
Bollerslev, T. and Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews, 11(2), 143172.CrossRefGoogle Scholar
Bosq, D. (1996). Nonparametric Statistics for Stochastic Processes. Springer, New York.CrossRefGoogle Scholar
Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations,. Journal of the Royal Statistical Society, Series B, 26(2), 211252.CrossRefGoogle Scholar
Box, G. and Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA.Google Scholar
Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive integrated moving average time series models. Journal of the American Statistical Association, 65(332), 15091526.CrossRefGoogle Scholar
Breidt, F. J., Crato, N., and de Lima, P. (1998). The detection and estimation of long memory in stochastic volatility models, Journal of Econometrics, 83(1–2), 325348.CrossRefGoogle Scholar
Brillinger, D. R. (1980). Time Series, Data Analysis and Theory. Holden-Day, Oakland, CA.Google Scholar
Brock, W. A. and Hommes, C. H. (1997). A rational route to randomness. Econometrica, 65(5), 10591095.CrossRefGoogle Scholar
Brockwell, P. J. and Davis, R. A. (2006). Time Series: Theory and Methods, 2nd edition. Springer, Berlin.Google Scholar
Brooks, C., Burke, S. P., and Persand, G. (2001). Benchmarks and the accuracy of GARCH model estimation. International Journal of Forecasting, 17(1), 4556.CrossRefGoogle Scholar
Brown, L. D., Hagerman, R. L., Griffin, P. A., and Zmijewski, M. E. (1987). An evaluation of alternative proxies for the market’s assessment of unexpected earnings. Journal of Accounting and Economics, 9(2), 159193.CrossRefGoogle Scholar
Brown, L. D. and Rozeff, M. S. (1979). Univariate time-series models of quarterly accounting earnings per share: A proposed model. Journal of Accounting Research, 17(1), 179189.CrossRefGoogle Scholar
Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, New York.CrossRefGoogle Scholar
Cai, Z. (2002). Regression quantiles for time series. Econometric Theory, 18(1), 169192.CrossRefGoogle Scholar
Campbell, J. Y., Lo, A. W., and MacKinlay, A. C. (1997). The Econometrics of Financial Markets. Princeton University Press.CrossRefGoogle Scholar
Campbell, J. Y. and Shiller, R. J. (1988). Stock prices, earnings and expected dividends. Journal of Finance, 43(3), 661676.CrossRefGoogle Scholar
Campbell, J. Y. and Thompson, S. B. (2008). Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies, 21(4), 15091531.CrossRefGoogle Scholar
Cantelli, F. P. (1933). Sulla determinazione empirica delle leggi di probabilitá. Giornale dell’Istituto Italiano degli Attuari, 4, 421424.Google Scholar
Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory, 18(1), 1739.CrossRefGoogle Scholar
Cavaliere, G., Mikosch, T, Rahbek, A., and Vilandt, F. (2023). Asymptotics for the generalized autoregressive conditional duration model. Preprint, arXiv:2307.01779.Google Scholar
Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur representation. Annals of Statistics, 19(2), 760777.CrossRefGoogle Scholar
Chen, J., Li, D., Linton, O., and Lu, Z. (2018). Semiparametric ultra-high dimensional model averaging of nonlinear dynamic time series. Journal of the American Statistical Association, 113(522), 919932.CrossRefGoogle Scholar
Chen, R., Yang, L., and Hafner, C. (2004). Nonparametric multistep-ahead prediction in time series analysis. Journal of the Royal Statistical Society, Series B, 66(3), 669686. doi:10.1111/j.1467-9868.2004.04664CrossRefGoogle Scholar
Chen, S. X. (1999). Beta kernel estimators for density functions. Computational Statistics and Data Analysis, 31(2), 131145.CrossRefGoogle Scholar
Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. In Heckman, J. J. and Leamer, E. E. (eds), Handbook of Econometrics, Vol. IV B. North Holland, Amsterdam.Google Scholar
Chen, X., Cho, Y. H., Dou, Y., and Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467515.CrossRefGoogle Scholar
Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric time series models. Journal of Econometrics, 130(2), 307335.CrossRefGoogle Scholar
Chen, X. Hansen, L. P., and Scheinkman, J. (2009). Nonlinear principal components and long-run implications of multivariate diffusions. Annals of Statistics, 37(6B), 42794312. doi:10.1214/09-AOS706CrossRefGoogle Scholar
Chen, X., Linton, O., and Robinson, P. M. (2000). The estimation of conditional densities. In Puri, M. L. (ed), Asymptotics in Statistics and Probability: Papers in Honor of George Gregory Roussas. De Gruyter, Berlin. doi:10.1515/9783110942002-008Google Scholar
Chen, X. and Shen, X. (1998). Sieve extremum estimates for weakly dependent data. Econometrica, 66(2), 289314.CrossRefGoogle Scholar
Chicheportiche, R. and Bouchaud, J.-P. (2014). The fine-structure of volatility feedback I: Multi-scale self-reflexivity. Physica A: Statistical Mechanics and its Applications, 410, 174195.CrossRefGoogle Scholar
Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28(3), 591605.CrossRefGoogle Scholar
Christiano, L. J. and Fitzgerald, T. J. (2003). The band pass filter. International Economic Review, 44(2), 435465.CrossRefGoogle Scholar
Chudik, A., Kapetanios, G., and Pesaran, M. H. (2018). A one covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models. Econometrica, 86(4), 14791512.CrossRefGoogle Scholar
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. J. (1990). STL: A seasonal-trend decomposition procedure based on LOESS. Journal of Official Statistics, 6(1), 333.Google Scholar
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829836.CrossRefGoogle Scholar
Cochrane, J. H. (1999). New facts in finance. NBER Working Paper 7169. National Bureau of Economic Research, Cambridge, MA.Google Scholar
Cohen, A. (1966). All admissible linear estimates of the mean vector. Annals of Mathematical Statistics, 37(2), 458463.CrossRefGoogle Scholar
Conley, T. G., Hansen, L. P., Luttmer, E. G., and Scheinkman, J. A. (1997). Short-term interest rates as subordinated diffusions. The Review of Financial Studies, 10(3), 525577.CrossRefGoogle Scholar
Coppejans, M. (2004). On Kolmogorov’s representation of functions of several variables by functions of one variable. Journal of Econometrics, 123(1), 131.CrossRefGoogle Scholar
Corsi, F. A. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2), 174196.CrossRefGoogle Scholar
Cox, D. R. (2006). Frequentist and Bayesian statistics: A critique (keynote address). In Lyons, L. and Ünel, M. K. (eds), Statistical Problems in Particle Physics, Astrophysics and Cosmology. World Scientific, Singapore.Google Scholar
Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385407.CrossRefGoogle Scholar
Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika, 91(3), 729737.CrossRefGoogle Scholar
Cox, D. R. and Snell, E. J. (1989), Analysis of Binary Data, 2nd edition. Chapman and Hall/CRC, London.Google Scholar
Craven, P. and Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische Mathematik, 31, 377403.CrossRefGoogle Scholar
Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Annals of Statistics, 25(1), 137.CrossRefGoogle Scholar
Dahlhaus, R. and Subba Rao, S. (2006). Statistical inference for time-varying ARCH processes. Annals of Statistics, 34(3), 10751114. doi:10.1214/009053606000000227CrossRefGoogle Scholar
Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.CrossRefGoogle Scholar
Davis, R. A. and Yau, C. Y. (2011). Comments on pairwise likelihood in the time series models. Statistica Sinica, 21(1), 255277.Google Scholar
Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika, 68(1), 265274. doi:10.2307/2335827CrossRefGoogle Scholar
Dedecker, J. and Saulière, G. (2017). The Mann–Whitney U-statistic for α-dependent sequences. Mathematical Methods of Statistics, 26, 111133. doi:10.3103/S1066530717020028CrossRefGoogle Scholar
Delgado, M. A. and Hidalgo, J. (2000). Nonparametric inference on structural breaks. Journal of Econometrics, 96(1), 113144.CrossRefGoogle Scholar
Denton, F., Feaver, C., and Spencer, B. (2005). Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy. Journal of Population Economics, 18(2), 203227.CrossRefGoogle Scholar
Diebold, F. X. (1998). The past, present, and future of macroeconomic forecasting. Journal of Economic Perspectives, 12(2), 175192.CrossRefGoogle Scholar
Diebold, F. X. (2017). Forecasting in Economics, Business, Finance and Beyond. Available at www.sas.upenn.edu/ fdiebold/Teaching221/Forecasting.pdfGoogle Scholar
Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13(3), 253263.CrossRefGoogle Scholar
Diebold, F. X. and Nason, J. A. (1990). Nonparametric exchange rate prediction? Journal of International Economics, 28(3–4), 315332.CrossRefGoogle Scholar
Diebold, F. X. and Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119134.CrossRefGoogle Scholar
Dimson, E. (1979). Risk measurement when shares are subject to infrequent trading. Journal of Financial Economics, 7(2), 197226.CrossRefGoogle Scholar
Doan, T., Litterman, R. B., and Sims, C. A. (1984). Forecasting and conditional projection using realistic prior distributions. Econometric Reviews, 3(1), 1100.CrossRefGoogle Scholar
Dong, C., Gao, J., and Linton, O. (2023). High-dimensional semiparametric moment restriction models. Journal of Econometrics, 232(2), 320345.CrossRefGoogle Scholar
Doukhan, P. (1994). Mixing: Properties and Examples. Springer, Berlin.CrossRefGoogle Scholar
Doukhan, P., Massart, P., and Rio, E. (1994). The functional central limit theorem for strongly mixing processes. Annales de l’Institut Henri Poincaré: Probabilités et statistiques, 30(1), 6382.Google Scholar
Drost, F. C. and Nijman, T. (1993). Temporal aggregation of GARCH processes. Econometrica, 61(4), 909927.CrossRefGoogle Scholar
Durbin, J. (1953). A note on regression when there is extraneous information about one of the coefficients. Journal of the American Statistical Association, 48(264), 799808.CrossRefGoogle Scholar
Durbin, J. (1960). The fitting of time-series models. Review of the International Statistical Institute, 28(3), 233244.CrossRefGoogle Scholar
Durbin, J. (1973). Distribution Theory for Tests Based on the Sample Distribution Function. Society for Industrial and Applied Mathematics, Philadelphia, PA.CrossRefGoogle Scholar
Dybvig, P. H. and Zhang, H. (2018). That is not my dog: Why doesn’t the log dividend–price ratio seem to predict future log returns or log dividend growths? SFS Cavalcade Asia-Pacific 2017 Annual Meeting (Beijing), AFA 2019 Annual Meeting (Atlanta). doi:10.2139/ssrn.3123595Google Scholar
Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. Society for Industrial and Applied Mathematics, Philadelphia, PA.Google Scholar
Efron, B. (1986). Why isn’t everyone a Bayesian? The American Statistician, 40(1), 15.CrossRefGoogle Scholar
Eicker, F. (1967). Limit theorems for regressions with unequal and dependent errors. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I. University of California Press, Berkeley.Google Scholar
Elbadawi, I., Gallant, A. R., and Souza, G. (1983). An elasticity can be estimated consistently without a priori knowledge of functional form. Econometrica, 51(6), 17311751.CrossRefGoogle Scholar
Embrechts, P., Klüppelberg, C., and Mikosch, T. (1997). Modelling Extremal Events. Springer, New York.CrossRefGoogle Scholar
Engle, R. F. (1974). Band spectrum regression. International Economic Review, 15(1), 111. doi:10.2307/2526084CrossRefGoogle Scholar
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 9871007.CrossRefGoogle Scholar
Engle, R. F. (1984). Wald, likelihood ratio, and Lagrange multiplier tests in econometrics. In Griliches, Z. and Intriligator, M. D. (eds), Handbook of Econometrics, Vol. II. North Holland, Amsterdam.Google Scholar
Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251276. doi:10.2307/1913236CrossRefGoogle Scholar
Engle, R. F. and Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica, 66(5), 11271162. doi:10.2307/2999632CrossRefGoogle Scholar
Engle, R. F. and Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. NBER Working Paper w8554. National Bureau of Economic Research, Cambridge, MA.Google Scholar
Eubank, R. L. (1988). Smoothing Splines and Nonparametric Regression. Marcel Dekker, New York.Google Scholar
Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383417.CrossRefGoogle Scholar
Fan, J. (1992). Design-adaptive nonparametric regression. Journal of the American Statistical Association, 82(420), 9981004.CrossRefGoogle Scholar
Fan, J. (1993). Local linear regression smoothers and their minimax efficiencies. Annals of Statistics, 21(1), 196216.CrossRefGoogle Scholar
Fan, J. and Chen, J. (1997). One-step local quasi-likelihood estimation. Journal of the Royal Statistical Society, Series B, 61(4), 927943.CrossRefGoogle Scholar
Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall, London.Google Scholar
Fan, J., Heckman, N. E., and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. Journal of the American Statistical Association, 90(429), 141150. doi:10.2307/2291137CrossRefGoogle Scholar
Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 13481360.CrossRefGoogle Scholar
Fan, J. and Yao, Q. (1998). Efficient estimation of conditional variance functions in stochastic regression. Biometrika, 85(3), 645660.CrossRefGoogle Scholar
Faust, J. (1992). When are variance ratio tests for serial dependence optimal? Econometrica, 60(5), 12151226.CrossRefGoogle Scholar
Feinstein, C. A. (2002). Seasonality of deaths in the U.S. by age and cause. Demographic Research, 6(17), 469486.CrossRefGoogle Scholar
Feller, W. (1965). An Introduction to Probability Theory and its Applications, Vol. II. Wiley, Chichester.Google Scholar
Findley, D. F., Monsell, B. C., Bell, W. R., Otto, M. C., and Chen, B.-C. (1998). New capabilities and methods of the X-12-ARIMA seasonal-adjustment program. Journal of Business & Economic Statistics, 16(2), 127152.CrossRefGoogle Scholar
Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. Journal of Applied Probability, 30(4), 790804.CrossRefGoogle Scholar
Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation. Review of Economics and Statistics, 82(4), 540554.CrossRefGoogle Scholar
Foster, D. P. and Nelson, D. B. (1996). Continuous record asymptotics for rolling sample variance estimators. Econometrica, 64(1), 139174.CrossRefGoogle Scholar
Fuller, W. (1995). Introduction to Statistical Time Series. Wiley, Chichester.CrossRefGoogle Scholar
Gabaix, X. (2008). Power laws. In Durlauf, S. N. and Blume, L. E. (eds), New Palgrave Dictionary of Economics, 2nd edition. Palgrave Macmillan, London.Google Scholar
Gabaix, X., Gopikrishnan, P., Plerou, V., and Stanley, H. E. (2006). Institutional investors and stock market volatility. Quarterly Journal of Economics. 121(2), 461504.CrossRefGoogle Scholar
Gabaix, X. and Ibragimov, R. (2011). Rank −1/2: A simple way to improve the OLS estimation of tail exponents. Journal of Business and Economic Statistics, 29(1), 2439.CrossRefGoogle Scholar
Gallant, A. R. and Souza, G. (1991). On the asymptotic normality of Fourier flexible form estimates. Journal of Econometrics, 50(3), 329353.CrossRefGoogle Scholar
Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. Chapman and Hall, London.CrossRefGoogle Scholar
Gatev, E., Goetzmann, W. N., and Rouwenhorst, K. G. (2006). Pairs trading: Performance of a relative-value arbitrage rule. The Review of Financial Studies, 19(3), 797827.CrossRefGoogle Scholar
Giraitis, L., Li, Y., and Phillips, P. C. B. (2023). Robust Inference on Correlation under General Heterogeneity. Cowles Foundation Discussion Papers 2354. Cowles Foundation for Research in Economics, Yale University.Google Scholar
Giraitis, L. and Robinson, P. M. (2001). Whittle estimation of ARCH models. Econometric Theory 17(3), 608631.CrossRefGoogle Scholar
Glivenko, V. (1933). Sulla determinazione empirica delle leggi di probabilitá. Giornale dell’Istituto Italiano degli Attuari, 4, 9299.Google Scholar
Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48(5), 17791801.CrossRefGoogle Scholar
Godambe, V. P. and Thompson, M. E. (1978). Some aspects of the theory of estimating equations. Journal of Statistical Planning and Inference, 2(1), 95104.CrossRefGoogle Scholar
Golub, G and van Loan, C. (1996). Matrix Computations, 3rd edition. Johns Hopkins University Press, London.Google Scholar
Goyal, A. and Welch, I. (2003). Predicting the equity premium with dividend ratios. Management Science, 49(5), 639654.CrossRefGoogle Scholar
Gozalo, P. and Linton, O. B. (2000). Local nonlinear least squares: Using parametric information in nonparametric regression. Journal of Econometrics, 99(1), 63106.CrossRefGoogle Scholar
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424438. doi:10.2307/1912791CrossRefGoogle Scholar
Granger, C. W. J. and Hughes, A. O. (1971). A new look at some old data: The Beveridge wheat price series. Journal of the Royal Statistics Society, Series A, 134, 413428.CrossRefGoogle Scholar
Granger, C. W. J. and Joyeux, R. (1980). An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 1529.CrossRefGoogle Scholar
Granger, C. W. J. and Morris, M. J. (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society, Series A, 139(2), 246257.CrossRefGoogle Scholar
Grenander, U. (1954). On the estimation of regression coefficients in the case of autocorrelated disturbances. Annals of Mathematical Statistics, 25(2), 252272.CrossRefGoogle Scholar
Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series. Wiley, New York.CrossRefGoogle Scholar
Härdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press.CrossRefGoogle Scholar
Härdle, W., Horowitz, J., and Kreiss, J.-P. (2003). Bootstrap methods for time series. International Statistical Review, 71(2), 435459.CrossRefGoogle Scholar
Härdle, W., and Linton, O. (1994). Applied nonparametric methods. In Engle, R. F. and McFadden, D. L. (eds), Handbook of Econometrics, Vol. IV. North Holland, Amsterdam.Google Scholar
Härdle, W. and Marron, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. Annals of Statistics, 13(4), 14651481.CrossRefGoogle Scholar
Haiden, T., Janousek, M., Vitart, F., Ben-Bouallegue, Z., Ferranti, L., and Prates, F. (2021). Evaluation of ECMWF forecasts, including the 2021 upgrade. ECMWF technical memorandum 884. European Centre for Medium-Range Weather Forecasts, Reading, UK.Google Scholar
Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.CrossRefGoogle Scholar
Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications. Academic Press, New York.Google Scholar
Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica, 71(1), 285317.CrossRefGoogle Scholar
Hall, R. E. (1978). Stochastic implications of the life cycle–permanent income hypothesis: Theory and evidence. Journal of Political Economy, 86(6), 971987.CrossRefGoogle Scholar
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357384.CrossRefGoogle Scholar
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.CrossRefGoogle Scholar
Han, H., Linton, O., Oka, T., and Whang, Y.-J. (2016). The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251270.CrossRefGoogle Scholar
Hannan, E. J. (1970). Multiple Time Series. Wiley, Chichester.CrossRefGoogle Scholar
Hannan, E. J. (1973). The asymptotic theory of linear time-series models. Journal of Applied Probability, 10(1), 130145.CrossRefGoogle Scholar
Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B, 41(2), 190195.CrossRefGoogle Scholar
Hannan, E. J. and Rissanen, J. (1982). Recursive estimation of mixed autoregressive-moving average order. Biometrika, 69(1), 8194.CrossRefGoogle Scholar
Hansen, B. E. (1997). Approximate asymptotic p-values for structural-change tests. Journal of Business & Economic Statistics, 15(1), 6067.Google Scholar
Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75(4), 11751189.CrossRefGoogle Scholar
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 10291054.CrossRefGoogle Scholar
Hansen, L. P. and Hodrick, R. J. (1980). Forward exchange rates as optimal predictors of future spot rates: An econometric analysis. Journal of Political Economy, 88(5), 829853.CrossRefGoogle Scholar
Hansen, L. P. and Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica, 50(5), 12691286.CrossRefGoogle Scholar
Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH(1,1)? Journal of Applied Econometrics, 20(7), 873889. doi:10.1002/jae.800CrossRefGoogle Scholar
Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure noise. Journal of Business and Economic Statistics, 24(2), 127161.CrossRefGoogle Scholar
Harris, D., McCabe, B., and Leybourne, S. (2008). Testing for long memory. Econometric Theory, 24(1), 143175.CrossRefGoogle Scholar
Hart, J. D. (1991). Kernel regression estimation with time series errors. Journal of the Royal Statistical Society, Series B, 53(1), 173187.CrossRefGoogle Scholar
Hart, J. D. and Vieu, P. (1990). Data-driven bandwidth choice for density estimation based on dependent data. Annals of Statistics, 18(2), 873890.CrossRefGoogle Scholar
Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press.Google Scholar
Hasbrouck, J. (2007). Empirical Market Microstructure. Oxford University Press.CrossRefGoogle Scholar
Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2022). Surprises in high-dimensional “ridgeless” least squares interpolation. Annals of Statistics, 50(2), 949986.CrossRefGoogle ScholarPubMed
Hastie, T. J. and Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, London.Google Scholar
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.CrossRefGoogle Scholar
Hasza, D. P. (1980). A note on the maximum likelihood estimation for the first-order autoregressive processes. Communications in Statistics: Theory and Methods, 9(13), 14111415.CrossRefGoogle Scholar
Hausman, J. A., Lo, A. W., and MacKinlay, A. C. (1992). An ordered probit analysis of transaction stock prices. Journal of Financial Economics, 31(3), 319379.CrossRefGoogle Scholar
He, C. and Teräsvirta, T. (1999). Fourth moment structure of the GARCH(p, q) process. Econometric Theory, 15(6), 824846.CrossRefGoogle Scholar
Herrndorf, N. (1984). A functional central limit theorem for weakly dependent sequences of random variables. Annals of Probability, 12(1), 141153. doi:10.1214/aop/1176993379.CrossRefGoogle Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327343.CrossRefGoogle Scholar
Hidalgo, J. and Seo, M. H. (2013). Testing for structural stability in the whole sample. Journal of Econometrics, 175(2), 8493.CrossRefGoogle Scholar
Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3(5), 11631174.CrossRefGoogle Scholar
Hill, J. B. (2010). On tail index estimation for dependent, heterogeneous data. Econometric Theory, 26(5), 13981436.CrossRefGoogle Scholar
Hillmer, S. C. and Tiao, G. C. (1982). An ARIMA-model-based approach to seasonal adjustment. Journal of the American Statistical Association, 77(377), 6370.CrossRefGoogle Scholar
Hodrick, R. (1992). Dividend yields and expected stock returns: Alternative procedures for inference and measurement. Review of Financial Studies, 5(3), 357386.CrossRefGoogle Scholar
Hodrick, R. and Prescott, E. C. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit, and Banking, 29(1), 116. doi:10.2307/2953682CrossRefGoogle Scholar
Holt, C. C. (1957). Forecasting seasonals and trends by exponentially weighted moving averages. Office of Naval Research Memorandum 52. Reprinted in Holt, C. C. (2004). International Journal of Forecasting, 20(1), 510. doi:10.1016/j.ijforecast.2003.09.015CrossRefGoogle Scholar
Hong, S., Linton, O., and Zhang, H. (2017). An investigation into multivariate variance ratio statistics and their application to stock market predictability. Journal of Financial Econometrics, 15(2), 173222.CrossRefGoogle Scholar
Hong, Y. (1996). Consistent testing for serial correlation of unknown form. Econometrica, 64(4), 837864.CrossRefGoogle Scholar
Howrey, E. P. (1968). A spectrum analysis of the long-swing hypothesis. International Economic Review, 9(2), 228252.CrossRefGoogle Scholar
Hyndman, R. J. and Athanasopoulos, G. (2014). Forecasting Principle and Practice. Otexts, Melbourne.Google Scholar
Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679688.CrossRefGoogle Scholar
Ibragimov, I. (2001). Estimation of analytic functions. IMS Lecture Notes-Monograph Series, 36, 359383.Google Scholar
Ibragimov, I. A. and Hasminskii, R. Z. (1980). On nonparametric estimation of regression. Soviet Mathematics Doklady, 21, 810814.Google Scholar
Imbens, G. W. and Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of Econometrics, 142(2), 615635.CrossRefGoogle Scholar
Imbens, G. W. and Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.CrossRefGoogle Scholar
Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., and Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Processes and their Applications, 119(7), 22492276.CrossRefGoogle Scholar
Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Annals of Probability, 26(1), 267307.CrossRefGoogle Scholar
Jensen, S. T. and Rahbek, A. (2004). Asymptotic normality of the QMLE of ARCH in the nonstationary case. Econometrica, 72(2), 641646.CrossRefGoogle Scholar
Jiang, G. and Knight, J. (1997). A nonparametric approach to the estimation of diffusion processes with an application to a short-term interest rate model. Econometric Theory, 13(5), 615645.CrossRefGoogle Scholar
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.Google Scholar
Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control, 12(2–3), 231254.CrossRefGoogle Scholar
Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59(6), 15511580.CrossRefGoogle Scholar
Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press.CrossRefGoogle Scholar
Jordà, Ò. (2005). Estimation and inference of impulse responses by local projections. The American Economic Review, 95(1), 161182.CrossRefGoogle Scholar
Kiefer, N. M., Vogelsang, T. J., and Bunzel, H. (2000). Simple robust testing of regression hypotheses. Econometrica, 68(3), 695714.CrossRefGoogle Scholar
Kilian, L. and Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cambridge University Press.CrossRefGoogle Scholar
Kim, T. Y. and Cox, D. D. (1996). Bandwidth selection in kernel smoothing of time series. Journal of Time Series Analysis, 17(1), 4963.CrossRefGoogle Scholar
Koenker, R. (2005). Quantile Regression. Cambridge University Press.CrossRefGoogle Scholar
Kolmogorov, A. N. (1957). On the representation of continuous functions of several variables by superposition of continuous functions of one variable and addition. Doklady Akademii Nauk USSR, 114(5), 953956.Google Scholar
Koop, G. and Korobilis, D. (2010). Bayesian multivariate time series methods for empirical macroeconomics. Foundations and Trends in Econometrics, 3(4), 267358. doi:10.1561/0800000013CrossRefGoogle Scholar
Kreiss, J. P. and Franke, J. (1992). Bootstrapping stationary autoregressive moving average models. Journal of Time Series Analysis, 13(4), 297317.CrossRefGoogle Scholar
Kristensen, D. (2010). Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. Journal of Econometrics, 156(2), 239259.CrossRefGoogle Scholar
Kristensen, D. and Linton, O. (2006). A closed-form estimator for the GARCH(1,1) model. Econometric Theory, 22(2), 323327.CrossRefGoogle Scholar
Kuznets, S. (1930). Secular Movements in Production and Prices: Their Nature and their Bearing upon Cyclical Fluctuations. Houghton Mifflin, Boston.Google Scholar
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the null of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1–3), 159178.CrossRefGoogle Scholar
Lazarus, E., Lewis, D. J., and Stock, J. H. (2021). The size–power tradeoff in HAR inference. Econometrica, 89(5), 24972516.CrossRefGoogle Scholar
Lee, S. W. and Hansen, B. E. (1994). Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. Econometric Theory, 10(1), 2952.CrossRefGoogle Scholar
Leeb, H. and Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric Theory, 21(1), 2159.CrossRefGoogle Scholar
Levy, H. (2006). Stochastic Dominance: Investment Decision Making under Uncertainty. Springer, New York.CrossRefGoogle Scholar
Lewbel, A. (2007). A local generalized method of moments estimator. Economics Letters, 94(1), 124128.CrossRefGoogle Scholar
Li, S. and Linton, O. (2021). When will the Covid-19 pandemic peak? Journal of Econometrics, 220(1), 130157.CrossRefGoogle ScholarPubMed
Li, Y. (2024). Correcting the bias of the sample cross-covariance estimator. Journal of Time Series Analysis, 45(2), 214247.CrossRefGoogle Scholar
Li, Z. M. and Linton, O. (2022). A ReMeDI for microstructure noise. Econometrica, 90(1), 367389.CrossRefGoogle Scholar
Lin, Z. Y. and Lu, C. (1996). Limit Theory for Mixing Dependent Random Variables. Science Press, New York.Google Scholar
Linton, O., Maasoumi, E., and Whang, Y.-J. (2008). Consistent testing for stochastic dominance under general sampling schemes. The Review of Economic Studies, 75(1), 333337.Google Scholar
Linton, O. and Mammen, E. (2005). Estimating semiparametric ARCH(∞) models by kernel smoothing. Econometrica, 73(3), 771836.CrossRefGoogle Scholar
Linton, O. B. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression using marginal integration. Biometrika, 82(1), 93100.CrossRefGoogle Scholar
Linton, O. and Whang, Y.-J. (2007). The quantilogram: With an application to evaluating directional predictability. Journal of Econometrics, 141(1), 250282.CrossRefGoogle Scholar
Lipster, R. and Shiryaev, A. (2001). Statistics of Random Processes, Vol. I, General Theory. Springer, New York.Google Scholar
Litterman, R. B. (1986). Forecasting with Bayesian vector autoregressions: Five years of experience. Journal of Business & Economic Statistics, 4(1), 2538.Google Scholar
Liu, L. Y., Patton, A. J., and Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, 187(1), 293311.CrossRefGoogle Scholar
Lo, A. W. (1988). Maximum likelihood estimation of generalized Itô processes with discretely sampled data. Econometric Theory, 4(2), 231247.CrossRefGoogle Scholar
Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica, 59(5), 12791313.CrossRefGoogle Scholar
Lo, A. W. (2001). Risk management for hedge funds: Introduction and overview. doi:10.2139/ssrn.283308Google Scholar
Lo, A. W. and MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. Review of Financial Studies, 1(1), 4166.CrossRefGoogle Scholar
Lo, A. W. and MacKinlay, A. C. (1990). An econometric analysis of nonsynchronous trading. Journal of Econometrics, 45(1–2), 181212.CrossRefGoogle Scholar
Lobato, I. (2001). Testing that a dependent process is uncorrelated. Journal of the American Statistical Association, 96(455), 10661076.CrossRefGoogle Scholar
Lumsdaine, R. L. (1996). Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. Econometrica, 64(3), 575596. doi:10.2307/2171862CrossRefGoogle Scholar
Mack, Y. P. (1981). Local properties of k-NN regression estimates. SIAM Journal on Algebraic Discrete Methods, 2(3), 311323.CrossRefGoogle Scholar
MacKinnon, J. G., Haug, A. A., and Michelis, L. (1999). Numerical distribution functions of likelihood ratio tests for cointegration. Journal of Applied Econometrics, 14(5), 563577.3.0.CO;2-R>CrossRefGoogle Scholar
McQuarrie, A. D. and Tsai, C. L. (1998). Regression and Time Series Model Selection. World Scientific, Singapore.CrossRefGoogle Scholar
Magnus, J. R. (1986). The exact moments of a ratio for quadratic forms in normal variables. Annales d’Economie et de Statistique, 4, 95109.CrossRefGoogle Scholar
Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with Applications in Statistics. Wiley, Chichester.CrossRefGoogle Scholar
Malinvaud, E. (1983). Econometric Methodology at the Cowles Commission: Rise and Maturity. https://cowles.yale.edu/sites/default/files/2022-12/50th-malinvaud.pdfGoogle Scholar
Mammen, E. (1992). When Does Bootstrap Work? Asymptotic Results and Simulations. Springer, Berlin.CrossRefGoogle Scholar
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of Statistics, 21(1), 255285.CrossRefGoogle Scholar
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394411.CrossRefGoogle Scholar
Masry, E. (1996a). Multivariate local polynomial regression for time series: Uniform strong consistency and rates. Journal of Time Series Analysis, 17(6), 571599.CrossRefGoogle Scholar
Masry, E. (1996b). Multivariate regression estimation local polynomial fitting for time series. Stochastic Processes and their Applications, 65(1), 81101.CrossRefGoogle Scholar
Masry, E. and Tjøstheim, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series: Strong convergence and asymptotic normality. Econometric Theory, 11(2), 258289.CrossRefGoogle Scholar
Meese, R. and Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics, 14(1–2), 324.CrossRefGoogle Scholar
Meijer, E. and Ypma, J. Y. (2008). A simple identification proof for a mixture of two univariate normal distributions. Journal of Classification, 25, 113123. doi:10.1007/s00357-008-9008-6CrossRefGoogle Scholar
Meitz, M. and Saikkonen, P. (2008). Stability of nonlinear AR–GARCH models. Journal of Time Series Analysis, 29(3), 453475.CrossRefGoogle Scholar
Mikosch, T. (1998). Elementary Stochastic Calculus with Finance in View. World Scientific, Singapore.CrossRefGoogle Scholar
Mikosch, T. and Stărică, C. (2000). Limit theory for the sample autocorrelations and extremes of a GARCH(1,1) process. Annals of Statistics, 28(5), 14271451.CrossRefGoogle Scholar
Müller, H.-G. (1992). Change-points in nonparametric regression analysis. Annals of Statistics, 20(2), 737761.CrossRefGoogle Scholar
Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American Statistical Association, 55(290), 299306.CrossRefGoogle Scholar
Mykland, P. A. and Zhang, L. (2006). ANOVA for diffusions and Itô processes. Annals of Statistics, 34(4), 19311963.CrossRefGoogle Scholar
Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9(1), 141142.CrossRefGoogle Scholar
Nelson, C. R. and Plosser, C. R. (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139162.CrossRefGoogle Scholar
Nelson, D. B. (1990a). Stationarity and persistence in the GARCH(1,1) model. Econometric Theory, 6(3), 318334.CrossRefGoogle Scholar
Nelson, D. B. (1990b). ARCH models as diffusion approximations. Journal of Econometrics, 45(1–2), 738.CrossRefGoogle Scholar
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347370.CrossRefGoogle Scholar
Nelson, D. B. and Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, 10(2), 229235.CrossRefGoogle Scholar
Nerlove, M. (1964). Spectral analysis of seasonal adjustment procedures. Econometrica, 32(3), 241286.CrossRefGoogle Scholar
Newey, W. K. and Steigerwald, D. G. (1997). Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica, 65(3), 587599. doi:10.2307/2171754CrossRefGoogle Scholar
Newey, W. K and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703708. doi:10.2307/1913610CrossRefGoogle Scholar
Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models. Econometrica, 77(5), 14471479.Google Scholar
Onatski, A. and Wang, C. (2018). Alternative asymptotics for cointegration tests in large VARs. Econometrica, 86(4), 14651478.CrossRefGoogle Scholar
Pagan, A. R. (1984). Econometric issues in the analysis of regressions with generated regressors. International Economic Review, 25(1), 221247.CrossRefGoogle Scholar
Pagan, A. R. and Hong, Y. S. (1991). Nonparametric estimation and the risk premium. In Barnett, W., Powell, J., and Tauchen, G. E. (eds), Nonparametric and Semiparametric Methods in Econometrics and Statistics. Cambridge University Press.Google Scholar
Pagan, A. R. and Schwert, G. W. (1990). Alternative models for conditional stock volatility. Journal of Econometrics, 45(1–2), 267290.CrossRefGoogle Scholar
Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica, 57(5), 10271057.CrossRefGoogle Scholar
Parzen, E. (1957). On consistency of the spectrum of a stationary time series. Annals of Mathematical Statistics, 28(2), 329334.CrossRefGoogle Scholar
Patton, A. J. (2002). Applications of copula theory in financial econometrics. PhD dissertation, University of California, San Diego.Google Scholar
Patton, A. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527556.CrossRefGoogle Scholar
Patton, A. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 418.CrossRefGoogle Scholar
Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press.Google Scholar
Peng, H., Wang, S., and Wang, X. (2008). Consistency and asymptotic distribution of the Theil–Sen estimator. Journal of Statistical Planning and Inference, 138(6), 18361850.CrossRefGoogle Scholar
Peng, L. and Yao, Q. (2003). Least absolute deviations estimation for ARCH and GARCH models. Biometrika, 90(4), 967975.CrossRefGoogle Scholar
Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. Econometrica, 57(6), 13611401.CrossRefGoogle Scholar
Pesaran, M. H. and Timmerman, A. (1995). Predictability of stock returns: Robustness and economic significance. Journal of Finance, 50(4), 12011228.CrossRefGoogle Scholar
Pesaran, M. H. and Timmermann, A. (2007). Selection of estimation window in the presence of breaks. Journal of Econometrics, 137(1), 134161.CrossRefGoogle Scholar
Peters, O. (2019). The ergodicity problem in economics. Nature Physics, 15, 12161221. doi:10.1038/s41567-019-0732-0CrossRefGoogle Scholar
Petruccelli, J. D. and Woolford, S. W. (1984). A threshold AR(1) model. Journal of Applied Probability, 21(2), 270286.CrossRefGoogle Scholar
Phillips, P. C. B. (1991a). Optimal inference in cointegrated systems. Econometrica, 59(2), 283306.CrossRefGoogle Scholar
Phillips, P. C. B. (1991b). To criticize the critics: An objective Bayesian analysis of stochastic trends. Journal of Applied Econometrics, 6(4), 333364.CrossRefGoogle Scholar
Phillips, P. C. B. and Jin, S. (2014). Testing the martingale hypothesis. Journal of Business and Economic Statistics, 32(4), 537554.CrossRefGoogle Scholar
Phillips, P. C. B. and Magdalinos, T. (2007). Limit theory for moderate deviations from a unit root. Journal of Econometrics, 136(1), 115130.CrossRefGoogle Scholar
Phillips, P. C. B. and Park, J. Y. (1999). Asymptotics for nonlinear transformations of integrated time series. Econometric Theory, 15(3), 269298.Google Scholar
Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335346.CrossRefGoogle Scholar
Phillips, P. C. B., Shi, S., and Yu, J. (2015). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 10431078.CrossRefGoogle Scholar
Phillips, P. C. B. and Solo, V. (1992). Asymptotics for linear processes. Annals of Statistics, 20(2), 9711001.CrossRefGoogle Scholar
Phillips, P. C. B. and Sun, Y. (2003). Regression with an evaporating logarithmic trend. Econometric Theory, 19(4), 692701.CrossRefGoogle Scholar
Phillips, P. C. B. and Yu, J. (2010). Dating the timeline of financial bubbles during the subprime crisis. Quantitative Economics, 2(3), 455491.CrossRefGoogle Scholar
Pollock, D. S. G. (2007). Wiener–Kolmogorov filtering, frequency-selective filtering, and polynomial regression. Econometric Theory, 23(1), 7188.CrossRefGoogle Scholar
Portnoy, S. (1984). Asymptotic behavior of M estimators of p regression parameters when p2/n is large. I. Consistency. Annals of Statistics, 12(4), 12981309.CrossRefGoogle Scholar
Portnoy, S. (1985). Asymptotic behavior of M estimators of p regression parameters when p2/n is large. II. Normal approximation. Annals of Statistics, 13(4), 14031417.CrossRefGoogle Scholar
Poterba, J. M. and Summers, L. H. (1988). Mean reversion in stock prices: Evidence and implications. Journal of Financial Economics, 22(1), 2759.CrossRefGoogle Scholar
Primiceri, G. and Tambalotti, A. (2020). Macroeconomic forecasting in the time of COVID-19. Northwestern University.Google Scholar
Protter, P. E. (2004). Stochastic Integration and Differential Equations, 2nd edition. Springer, New York.Google Scholar
Quandt, R. E. (1960). Tests of the hypothesis that a linear regression obeys two separate regimes. Journal of the American Statistical Association, 55(290), 324–30.CrossRefGoogle Scholar
Resnick, S. and Stărică, C. (1998). Tail index estimation for dependent data. Annals of Applied Probability, 8(4), 11561183. doi:10.1214/aoap/1028903376CrossRefGoogle Scholar
Robinson, P. M. (1983). Nonparametric estimators for time series. Journal of Time Series Analysis, 4(3), 185207.CrossRefGoogle Scholar
Robinson, P. M. (1988). The stochastic difference between econometric statistics. Econometrica, 56(3), 531548.CrossRefGoogle Scholar
Robinson, P. M. (1994). Semiparametric analysis of long-memory time series. Annals of Statistics, 22(1), 515539. doi:10.1214/aos/1176325382CrossRefGoogle Scholar
Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Mathematical Finance, 7(1), 95105.CrossRefGoogle Scholar
Roll, R. (1984). A simple implicit measure of the effective bid–ask spread in an efficient market. Journal of Finance, 39(4), 11271139.Google Scholar
Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics, 27(3), 832837.CrossRefGoogle Scholar
Rossi, B. (2013). Exchange rate predictability. Journal of Economic Literature, 51(4), 10631119.CrossRefGoogle Scholar
Rothenberg, T. J. (1973). Efficient Estimation with A Priori Information. Yale University Press, New Haven, CT.Google Scholar
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461464.CrossRefGoogle Scholar
Shephard, N. (ed). (2005). Stochastic Volatility: Selected Readings. Oxford University Press.CrossRefGoogle Scholar
Shibata, R. (1981). An optimal selection of regression variables. Biometrika, 68(1), 4554.CrossRefGoogle Scholar
Shiller, R. (1973). A distributed lag estimator derived from smoothness priors. Econometrica, 41(4), 775788.CrossRefGoogle Scholar
Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.Google Scholar
Silver, N. (2012). The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t. Penguin Press, London.Google Scholar
Silverman, B. W. (1984). Spline smoothing: The equivalent variable kernel method. Annals of Statistics, 12(3), 898916.CrossRefGoogle Scholar
Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society, Series B, 47(1), 152.CrossRefGoogle Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.Google Scholar
Sims, C. A. (1972). Money, income, and causality. The American Economic Review, 62(4), 540552.Google Scholar
Sims, C. A. (1974). Seasonality in regression. Journal of the American Statistical Association, 69(347), 618626.CrossRefGoogle Scholar
Sims, C. A. (1980). Macroeconomics and reality. Econometrica, 48(1), 148. doi:10.2307/1912017CrossRefGoogle Scholar
Sims, C. A. (2015). VAR System Properties from the Jordan Decomposition; Cointegration. http://sims.princeton.edu/yftp/Times15/cointLect15.pdfGoogle Scholar
Sims, C. A. and Zha, T. (1999). Error bands for impulse responses. Econometrica, 67(5), 11131155. doi:10.1111/1468-0262.00071CrossRefGoogle Scholar
Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229231.Google Scholar
Slutzky, E. (1927). Slozhenie sluchainykh prichin, kak istochnik tsiklicheskikh protsessov. Voprosy kon”yunktury, 3, 3464.Google Scholar
Slutzky, E. (1937). The summation of random causes as the source of cyclic processes. Econometrica, 5(2), 105146.CrossRefGoogle Scholar
Sornette, D. (2017). Why Stock Markets Crash (Critical Events in Complex Financial Systems). Princeton University Press.Google Scholar
Stambaugh, R. F. (1999). Predictive regressions. Journal of Financial Economics, 54(3), 375421.CrossRefGoogle Scholar
Stock, J. (1994). Unit roots, structural breaks, and trends. In Engle, R.F. and McFadden, D.L (eds), Handbook of Econometrics, Vol. IV. North Holland, Amsterdam.Google Scholar
Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Annals of Statistics, 8(6), 13481360.CrossRefGoogle Scholar
Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Annals of Statistics, 10(4), 10401053.CrossRefGoogle Scholar
Stute, W. (1984). Asymptotic normality of nearest neighbor regression function estimates. Annals of Statistics, 12(3), 917926.CrossRefGoogle Scholar
Su, L. and Xiao, Z. (2008). Testing structural change in time-series nonparametric regression models. Statistics and its Interface, 1(2), 347366.CrossRefGoogle Scholar
Sutradhar, B. C. (1994). Moments of the sample autocovariances and autocorrelations for a general Gaussian process. Sankhya B, 56(2), 272285.Google Scholar
Sutradhar, B. C. and Kumar, P. (2003). The inversion of correlation matrix for MA(1) process. Applied Mathematics Letters, 16(3), 317321.CrossRefGoogle Scholar
Taleb, N. N. (2010). The Black Swan, 2nd edition. Penguin, London.Google Scholar
Teräsvirta, T. (2018). Nonlinear models in macroeconometrics. Oxford Research Encyclopedia of Economics and Finance. doi:10.1093/acrefore/9780190625979.013.177CrossRefGoogle Scholar
Theil, H. and Goldberger, A. S. (1961). On pure and mixed statistical estimation in economics. International Economic Review, 2(1), 6578.CrossRefGoogle Scholar
Tibshirani, R. (1984). Local likelihood estimation. PhD thesis, Stanford University.Google Scholar
Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58(1), 267288.CrossRefGoogle Scholar
Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach. Oxford University Press.CrossRefGoogle Scholar
Tong, H. and Yao, Q. (1998). Cross-validatory bandwidth selection for regression estimation based on dependent data. Journal of Statistical Planning and Inference, 68(2), 387415.Google Scholar
Van de Geer, S. A. (2008). High-dimensional generalized linear models and the lasso. Annals of Statistics, 36(2), 614645. doi:10.1214/009053607000000929CrossRefGoogle Scholar
Vogelsang, T. J. and Yang, J. (2016). Exactly/nearly unbiased estimation of autocovariances of a univariate time series with unknown mean. Journal of Time Series Analysis, 37(6), 723740.CrossRefGoogle Scholar
Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia, PA.Google Scholar
Wang, Q. and Phillips, P. C. B. (2009a). Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory, 25(3), 710738.CrossRefGoogle Scholar
Wang, Q. and Phillips, P. C. B. (2009b). Structural nonparametric cointegrating regression. Econometrica, 77(6), 19011948.Google Scholar
Watson, G. S. (1964). Smooth regression analysis. Sankhya Series A, 26(4), 359372.Google Scholar
Watson, M. (1994). Vector autoregressions and cointegration. In Engle, R. F. and McFadden, D.L. (eds), Handbook of Econometrics, Vol. IV. North Holland, Amsterdam.Google Scholar
West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. Springer, New York.Google Scholar
Whang, Y.-J. and Kim, J. (2003). A multiple variance ratio test using subsampling. Economics Letters, 79(2), 225230.CrossRefGoogle Scholar
Whang, Y.-J. and Linton, O. (1999). The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series. Journal of Econometrics, 91(1), 142.CrossRefGoogle Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817838.CrossRefGoogle Scholar
White, H. (2000). A reality check for data snooping. Econometrica, 68(5), 10971126.CrossRefGoogle Scholar
Whittaker, E. T. (1923). On a new method of graduation. Proceedings of the Edinburgh Mathematical Society, 41, 6375.CrossRefGoogle Scholar
Whittaker, E. T. and Robinson, G. (1967). The Calculus of Observations: A Treatise on Numerical Mathematics, 4th edition. Dover, New York.Google Scholar
Wiener, N. (1923). Differential-space. Journal of Mathematics and Physics, 2, 131174. doi:10.1002/sapm192321131CrossRefGoogle Scholar
Wiener, N. (1930). Generalized harmonic analysis. Acta Mathematica, 55, 117258.CrossRefGoogle Scholar
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324342. doi:10.1287/mnsc.6.3.324CrossRefGoogle Scholar
Wold, H. (1954). A Study in the Analysis of Stationary Time Series, 2nd edition. Almqvist and Wiksell, Uppsala.Google Scholar
Wu, W. B. and Pourahmadi, M. (2009). Banding sample autocovariance matrices of stationary processes. Statistica Sinica, 19(4), 17551768.Google Scholar
Yaglom, A. M. (1965). Stationary Gaussian processes satisfying the strong mixing condition and best predictable functionals. In Neyman, J. and Cam, L. M. Le (eds), Bernoulli 1713 Bayes 1763 Laplace 1813. Springer, Berlin. https://doi.org/10.1007/978-3-642-99884-3_14Google Scholar
Yakowitz, S. (1987). Nearest neighbour methods for time series analysis. Journal of Time Series Analysis, 8(2), 235247. doi:10.1111/j.1467-9892.1987.tb00435.xCrossRefGoogle Scholar
Zellner, A. (1962). An efficient method of estimating seemingly unrelated regression equations and tests for aggregation bias. Journal of the American Statistical Association, 57(298), 348368.CrossRefGoogle Scholar
Zellner, A. and Palm, F. (1974). Time series analysis and simultaneous equation econometric models. Journal of Econometrics, 2(1), 1754.CrossRefGoogle Scholar
Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach. Bernoulli, 12(6), 10191043.CrossRefGoogle Scholar
Zhang, L., Mykland, P., and Aït-Sahalia, Y. (2005). A tale of two timescales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100(472), 13941411.CrossRefGoogle Scholar
Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14(1), 4552.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Oliver Linton, University of Cambridge
  • Book: Time Series for Economics and Finance
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009396271.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Oliver Linton, University of Cambridge
  • Book: Time Series for Economics and Finance
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009396271.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Oliver Linton, University of Cambridge
  • Book: Time Series for Economics and Finance
  • Online publication: 19 December 2024
  • Chapter DOI: https://doi.org/10.1017/9781009396271.019
Available formats
×