Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T12:31:05.656Z Has data issue: false hasContentIssue false

2 - Univariate Time Series Models

Published online by Cambridge University Press:  05 December 2014

Janet M. Box-Steffensmeier
Affiliation:
Ohio State University
John R. Freeman
Affiliation:
University of Minnesota
Matthew P. Hitt
Affiliation:
Louisiana State University
Jon C. W. Pevehouse
Affiliation:
University of Wisconsin, Madison
Get access

Summary

UNDERSTANDING UNIVARIATE PROCESSES

The first class of time series models we investigate are univariate models called ARMA (autoregressive moving average) models. In the Appendix, we show how to gain significant insights into the dynamics of difference equations –the basis of time series econometrics – by simply solving them and plotting solutions over time. By stipulating a model based on our verbal theory and deriving its solution, we can note the conditions under which the processes we model return to equilibrium.

In the series of models discussed in this chapter, we turn this procedure round. We begin by studying the generic forms of patterns that could be created by particular datasets. We then analyze the data to see what dynamics are present in the data-generating process, which induce the underlying structure of the data. As a modeling process, ARMA models were perfected by Box and Jenkins (1970), who were attempting to come up with a better way than extrapolation or smoothing to predict the behavior of systems. Indeed, their method of examining the structures in a time series, filtering them from the data, and leaving a pure stochastic series improved predictive (i.e., forecasting)ability. Box-Jenkins modeling became quite popular, and as Kennedy notes,“for years the Box-Jenkins methodology was synonymous with time series analysis” (Kennedy, 2008, 297).

The intuition behind Box-Jenkins modeling is straightforward. Time series data redundent can be composed of multiple temporal processes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×