Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T01:08:15.930Z Has data issue: false hasContentIssue false

1 - Systematics and evolution of ticks with a list of valid genus and species names

Published online by Cambridge University Press:  21 August 2009

S. C. Barker
Affiliation:
Parasitology Section School of Molecular and Microbial Sciences University of Queensland Brisbane Qld 4072 Australia
A. Murrell
Affiliation:
Parasitology Section School of Molecular and Microbial Sciences University of Queensland Brisbane Qld 4072 Australia
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. Several changes to the nomenclature of ticks have been made or are likely to be made in the near future. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging (‘basal’) lineage of endemic Australasian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the valid genus and species names of ticks as at Febuary 2007.

INTRODUCTION

Hoogstraal & Aeschlimann (1982) were apparently the first people to publish a phylogenetic tree for the ticks (suborder Ixodida); however, hypotheses about the evolutionary relationships of ticks had been proposed well before this (e.g. Pomerantsev, 1948; Camicas & Morel, 1977).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 1 - 39
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, R. H., Beveridge, I., Bull, C. M., et al. (2006). Systematic status of Aponomma tachyglossi Roberts (Acari: Ixodidae) from echidnas, Tachyglossus aculeatus, from Queensland, Australia. Systematic and Applied Acarology 11, 23–39.CrossRefGoogle Scholar
Apanaskevich, D. A. & Horak, I. G. (2005). The genus Hyalomma Koch, 1844. II. Taxonomic status of H. (Euhyalomma) anatoloicum Koch, 1844 and H. (E.) excavatum Kock, 1844 (Acari, Ixodidae) with redescriptions of all stages. Acarina 13, 181–197.Google Scholar
Apanaskevich, D. A. & Horak, I. G. (2006). The genus Hyalomma Koch, 1844. I. Reinstatement of Hyalomma (Euhyalomma) glabrum Delpy, 1949 (Acari, Ixodidae) as a valid species with a redescription of the adults, the first description of its immature stages and notes on its biology. Onderstepoort Journal of Veterinary Research 73, 1–12.CrossRefGoogle ScholarPubMed
Balashov, Y. S. (1994). Importance of continental drift in the distribution and evolution of ixodid ticks. Entomological Review 73, 42–50.Google Scholar
Barker, S. C. (1998). Distinguishing species and populations of rhipicephaline ticks with ITS 2 ribosomal RNA. Journal of Parasitology 84, 887–892.CrossRefGoogle ScholarPubMed
Barker, S. C. & Murrell, A. (2002). Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Experimental and Applied Acarology 28, 55–68.CrossRefGoogle ScholarPubMed
Beati, L. & Keirans, J. E. (2001). Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Journal of Parasitology 87, 32–48.CrossRefGoogle ScholarPubMed
Beati, L., Keirans, J. E., Durden, L. A. & Opiang, M. D. (2008). Bothriocroton oudemansi (Neumann, 1910) comb. nov. (Acari: Ixodida: Ixodidae), an ectoparasite of the long-beaked echidna in Papua New Guinea: redescription of the male and first description of the female and nymph. Systematic Parasitology69, 185–200.CrossRefGoogle Scholar
Berdyev, A. (1989). On the history of areas and ways of distribution of ticks of the genus Dermacentor Koch, 1844 (Parasitiformes, Ixodidae). Parazitologiia 23, 166–172.Google Scholar
Black, W. C. IV & Piesman, J. (1994). Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences of the USA 91, 10034–10038.CrossRefGoogle ScholarPubMed
Black, W. C. IV & Roehrdanz, R. L. (1998). Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Molecular Biology and Evolution 15, 1772–1785.CrossRefGoogle Scholar
Black, W. C. IV, Klompen, J. S. H. & Keirans, J. E. (1997). Phylogenetic relationships among tick subfamilies based on the 18S nuclear rDNA gene. Molecular Phylogenetics and Evolution 7, 129–144.CrossRefGoogle ScholarPubMed
Borges, L. M. F., Labruna, M. B., Linardi, P. M. & Ribeiro, M. F. B. (1998). Recognition of the tick genus Anocentor Schulze, 1937 (Acari: Ixodidae) by numerical taxonomy. Journal of Medical Entomology 35, 891–894.CrossRefGoogle ScholarPubMed
Broughton, R. E., Milam, J. E. & Roe, B. A. (2001). The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Research 11, 1958–1967.Google ScholarPubMed
Camicas, J.-L. & Morel, P.-C. (1977). Position systématique et classification des tiques (Acarida: Ixodida). Acarologia 18, 410–420.Google Scholar
Camicas, J.-L., Hervy, J. P., Adam, F. & Morel, P. C. (1998). Les Tiques du Monde: Nomenclature, Stades Décrits, Hôtes, Repartition [The Ticks of the World: Nomenclature, Described Stages, Hosts, Distribution]. Pan's: Orstom.Google Scholar
Campbell, N. J. H. & Barker, S. C. (1998). An unprecedented major rearrangement in an arthropod mitochondrial genome. Molecular Biology and Evolution 15, 1786–1787.CrossRefGoogle Scholar
Campbell, N. J. H. & Barker, S. C. (1999). The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: five-fold tandem repetition of a coding region. Molecular Biology and Evolution 16, 732–740.CrossRefGoogle Scholar
Caporale, D. A., Rich, S. M., Spielman, A., Telford, S. R. III & Kocher, T. D. (1995). Discriminating between Ixodes ticks by means of mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 4, 361–365.CrossRefGoogle ScholarPubMed
Cox, C. B. & Moore, P. D. (1993). Biogeography: An Ecological and Evolutionary Approach. Oxford, UK: Blackwell Science.Google Scholar
Crampton, A., McKay, I. & Barker, S. C. (1996). Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA. International Journal for Parasitology 26, 511–517.CrossRefGoogle ScholarPubMed
Crosbie, P. R., Boyce, W. M. & Rodwell, T. C. (1998). DNA sequence variation in Dermacentor hunteri and estimated phylogenies of Dermacentor species (Acari: Ixodidae) in the New World. Journal of Medical Entomology 35, 277–288.CrossRefGoogle ScholarPubMed
Dobson, S. J. & Barker, S. C. (1999). Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. Molecular Phylogenetics and Evolution 11, 288–295.CrossRefGoogle ScholarPubMed
Durden, L. A., Keirans, J. E. & Smith, L. L. (2002). Amblyomma geochelone, a new species of tick (Acari: Ixodidae) from the Madagascan ploughshare tortoise. Journal of Medical Entomology 39, 398–403.CrossRefGoogle ScholarPubMed
Estrada-Peña, A.,Venzal, J. M., Barros-Battesti, D. M., et al. (2004). Three new species of Anticola (Acari: Argasidae) from Brazil, with a key to the known species in the genus. Journal of Parasitology 90, 490–498.CrossRefGoogle ScholarPubMed
Estrada-Peña, A., Castellá, J. & Morel, P. C. (1994). Cuticular hydrocarbon composition, phenotypic variability, and geographic relationships in allopatric populations of Amblyomma variegatum (Acari: Ixodidae) from Africa and the Caribbean. Journal of Medical Entomology 31, 534–544.CrossRefGoogle ScholarPubMed
Estrada-Peña, A., Castellá, J. & Moreno, J. A. (1994). Using cuticular hydrocarbon composition to elucidate phylogenies in tick populations (Acari: Ixodidae). Acta Tropica 58, 51–71.CrossRefGoogle Scholar
Estrada-Peña, A., Osácar, J. J., Calvete, C. & Estrada-Peña, R. (1997). Estimation of genetic affinities between sympatric populations of Rhipicephalus pusillus ticks (Acari: Ixodidae) by analysis of cuticular hydrocarbons. Folia Parasitologica 44, 147–154.Google Scholar
Estrada-Peña, A., Venzal, J. M., Gonzalez-Acuna, D. & Gugliemone, A. A. (2003). Argas (Persicargas) keiransi n. sp. (Acari: Argasidae), a parasite of the chimango, Milvago c. chimango (Aves: Falconiformes) in Chile. Journal of Medical Entomology 40, 766–769.CrossRefGoogle Scholar
Filippova, N. A. (1993). Ventral skeleton of male [sic] of ixodid ticks of the subfamily Amblyomminae, its evolution and role for supergeneric taxonomy. Parazitologiia 27, 3–18.Google Scholar
Filippova, N. A. (1994). Classification of the subfamily Amblyomminae (Ixodidae) in connection with re-investigation of chaetotaxy of the anal valve. Parazitologiia 28, 3–12.Google Scholar
Fuente, J. (2003). The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Experimental and Applied Acarology 29, 331–344.CrossRefGoogle Scholar
Fukunaga, M., Yabuki, M., Hamase, A., Oliver, J. H. Jr & Nakao, M. (2000). Molecular phylogenetic analysis of ixodid ticks based on the ribosomal DNA spacer, internal transcrib- ed spacer 2, sequences. Journal of Parasitology 86, 38–43.CrossRefGoogle Scholar
Guglielmone, A. A. & Keirans, J. E. (2002). Ornithodoros kohlsi Guglielmone and Keirans (Acari: Ixodida: Argasidae), a new name for Ornithodoros boliviensis Kohls and Clifford 1964. Proceedings of the Entomological Society of Washington 104, 822.Google Scholar
Haring, E., Kruckenhauser, L., Gamauf, A., Riesing, M. J. & Pinsker, W. (2001). The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Molecular Biology and Evolution 18, 1892–1904.CrossRefGoogle ScholarPubMed
Horak, I. G., Camicas, J.-L. & Kierans, J. E. (2002). The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): a world list of valid tick names. Experimental and Applied Acarology 28, 27–54.CrossRefGoogle ScholarPubMed
Hoogstraal, H. (1978). Biology of ticks. In Tick-Borne Diseases and their Vectors, ed. Wilde, J. K. H., pp. 3–14. Edinburgh, UK: Centre for Tropical Veterinary Medicine.Google Scholar
Hoogstraal, H. & Aeschlimann, A. (1982). Tick–host specificity. Bulletin de la Société Entomologique Suisse 55, 5–32.Google Scholar
Hutcheson, H. J., Klompen, J. S. H., Keirans, J. E., et al. (2000). Current progress in tick molecular systematics. In Proceedings, 3rd International Conference on Ticks and Tick-Borne Pathogens, eds. Kazimirova, M. et al., pp. 11–19. Bratislava, Slovak Republic: Institute of Zoology, Slovak Academy of Sciences.Google Scholar
Hutcheson, H. J., Oliver, J. H., Houck, M. A. & Strauss, R. E. (1995). Multivariate morphometric discrimination of nymphal and adult forms of the blacklegged tick (Acari: Ixodidae), a principal vector of the agent of Lyme disease in eastern North America. Journal of Medical Entomology 32, 827–842.CrossRefGoogle Scholar
Hwang, U. W., Friedrich, M., Tautz, D., Park, C. J. & Kim, W. (2001). Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413, 154–157.CrossRefGoogle ScholarPubMed
Inoue, J. G., Miya, M., Tsukamoto, K. & Nishida, M. (2001). A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Molecular Phylogenetics and Evolution 20, 275–285.CrossRefGoogle ScholarPubMed
Kaufman, T. S. (1972). A revision of the genus Aponomma Neumann, 1899 (Acarina: Ixodidae). Ph. D. dissertation, University of Maryland, College Park, MD.
Keirans, J. E. (1992). Systematics of the Ixodida (Argasidae, Ixodidae, Nuttalliellidae): an overview and some problems. In Tick Vector Biology: Medical and Veterinary Aspects, eds. Fivay, B.et al., pp. 1–21. Berlin, Germany: Springer-Verlag.Google Scholar
Keirans, J. E. & Robbins, R. G. (1999). A world checklist of genera, subgenera, and species of ticks (Acari: Ixodida) published from 1973 to 1997. Journal of Vector Ecology 24, 115–129.Google Scholar
Klompen, J. S. H. (1992). Comparative morphology of argasid larvae (Acari: Ixodida: Argasidae), with notes on phylogenetic relationships. Annals of the Entomological Society of America 85, 541–560.CrossRefGoogle Scholar
Klompen, J. S. H. (1999). Phylogenetic relationships in the family Ixodidae with emphasis on the genus Ixodes (Parasitiformes: Ixodidae). In 9th Acarology Symposium, pp. 349–354. Colombus, OH: Ohio State University Press.
Klompen, H. & Grimaldi, D. (2001). First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Annals of the Entomological Society of America 94, 10–15.CrossRefGoogle Scholar
Klompen, J. S. H. & Oliver, J. H. Jr (1993). Systematic relationships in the soft ticks (Acari: Ixodida: Argasidae). Systematic Entomology 18, 313–331.CrossRefGoogle Scholar
Klompen, J. S. H., Black, W. C. IV, Keirans, J. E. & Norris, D. E. (2000). Systematics and biogeography of hard ticks: a total evidence approach. Cladistics 16, 79–102.CrossRefGoogle Scholar
Klompen, J. S. H., Black, W. C. IV, Keirans, J. E. & Oliver, J. H. Jr (1996). Evolution of ticks. Annual Review of Entomology 41, 141–161.CrossRefGoogle ScholarPubMed
Klompen, H., Dobson, S. J. & Barker, S. C. (2002). A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch, 1844. Systematic Parasitology 53, 101–107.CrossRefGoogle Scholar
Klompen, J. S. H., Oliver, J. H. Jr, Keirans, J. E. & Homsher, P. J. (1997). A re-evaluation of relationships in the Metastriata (Acari: Parasitiformes: Ixodidae). Systematic Parasitology 38, 1–24.CrossRefGoogle Scholar
Krantz, G. W. (1978). A Manual of Acarology.Corvallis, OR: Oregon State University Press.Google Scholar
Labruna, M. B., Keirans, J. E., Camargo, L. M. A., et al. (2005). Amblyomma latepunctatum, a valid tick species (Acari: Ixodidae) long misidentified with both Amblyomma incisum and Amblyomma scalpturatum. Journal of Parasitiology 91, 527–541.CrossRefGoogle ScholarPubMed
Lane, R. S. & Poinar, G. O. (1986). First fossil tick (Acari: Ixodidae) in New World amber. International Journal of Acarology 12, 75–78.CrossRefGoogle Scholar
Lehtinen, P. T. (1991). Morphology and phylogeny. In Modern Acarology eds. Dusbabek, F. and Buvka, V., pp. 101–113. The Hague, the Netherlands: SPB Academic Publishing.Google Scholar
Lindquist, E. E., Wu, K. W. & Redner, J. H. (1999). A new species of the tick genus Ixodes (Acari: Ixodidae) parasitic on mustelids (Mammalia: Carnivora) in Canada. Canadian Entomologist 131, 151–170.CrossRefGoogle Scholar
Maca-Meyer, N., Gonzalez, A. M., Larruga, J. M., Flores, C. & Cabrera, V. M. (2001). Major genomic mitochondrial lineages delineate early human expansions. BMC Genetics 2, 13.CrossRefGoogle ScholarPubMed
Mangold, A. J., Bargues, M. D. & Mas-Coma, S. (1998 a). 18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari: Ixodidae). Parasitology Research 60, 31–37.Google Scholar
Mangold, J. J., Bargues, M. D. & Mas-Coma, S. (1998 b). Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research 84, 478–484.CrossRefGoogle Scholar
Mans, B. J., Louw, A. I. & Neitz, A. W. H. (2002). Evolution of hematophagy in ticks: common origins for blood coagulation and platelet aggregration inhibitors from soft ticks of the genus Ornithodoros. Molecular Biology and Evolution 19, 1695–1705.CrossRefGoogle Scholar
McLain, D. K., Wesson, D. M., Collins, F. H. & Oliver, J. H. Jr (1995 a). Evolution of the rDNA spacer, ITS 2, in the ticks Ixodes scapularis and I. pacificus (Acari: Ixodidae). Heredity 75, 303–319.CrossRefGoogle Scholar
McLain, D. K., Wesson, D. M., Oliver, J. H. Jr & Collins, F. H. (1995 b). Variation in ribosomal DNA internal transcribed spacer 1 among eastern populations of Ixodes scapularis (Acari: Ixodidae). Journal of Medical Entomology 32, 353–360.CrossRefGoogle Scholar
Miller, H. C., Conrad, A. M., Barker, S. C. & Daugherty, C. H. (2007). Distribution and phylogenetic analyses of an endangered tick, Amblyomma sphenodonti. New Zealand Journal of Zoology34, 97–105.
Miya, M., Kawaguchi, A. & Nishida, M. (2001). Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Molecular Biology and Evolution 18, 1993–2009.CrossRefGoogle ScholarPubMed
Murrell, A. & Barker, S. C. (2003). Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systematic Parasitology 56, 169–172.CrossRefGoogle Scholar
Murrell, A., Campbell, N. J. & Barker, S. C. (1999). Mitochondrial 12S rDNA indicates that the Rhipicephalinae (Acari: Ixodida) is paraphyletic. Molecular Phylogenetics and Evolution 12, 83–86.CrossRefGoogle Scholar
Murrell, A., Campbell, N. J. & Barker, S. C. (2000). Phylogenetic analyses of the rhipicephaline ticks indicate that the genus Rhipicephalus is paraphyletic. Molecular Phylogenetics and Evolution 16, 1–7.CrossRefGoogle ScholarPubMed
Murrell, A., Campbell, N. J. H. & Barker, S. C. (2001 a). Recurrent gains and losses of large (84–109 bp) repeats in the rDNA internal transcribed spacer 2 (ITS2) of rhipicephaline ticks. Insect Molecular Biology 10, 587–596.CrossRefGoogle ScholarPubMed
Murrell, A., Campbell, N. J. H. & Barker, S. C. (2001 b). A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Molecular Phylogenetics and Evolution 21, 244–258.CrossRefGoogle ScholarPubMed
Murrell, A., Campbell, N. J. H. & Barker, S. C. (2003). The value of idiosyncratic markers and changes to conserved tRNA sequences from the mitochondrial genome of hard ticks (Acari: Ixodida: Ixodidae) for phylogenetic inference. Systematic Biology 52, 296–310.CrossRefGoogle ScholarPubMed
Murrell, A., Dobson, S. J., Walter, D. E., et al. (2005). Relationships among the three major lineages of the Acari (Arthropoda: Arachnida) inferred from small subunit rRNA: paraphyly of the Parasitiformes with respect to the Opilioacariformes and relative rates of nucleotide substitution. Invertebrate Systematics 19, 383–389.CrossRefGoogle Scholar
Norris, D. E., Klompen, J. S. H. & Black, W. C. IV (1999). Comparison of the mitochondrial 12S and 16S ribosomal DNA genes in resolving phylogenetic relationships among hard ticks (Acari: Ixodidae). Annals of the Entomological Society of America 92, 117–129.CrossRefGoogle Scholar
Norris, D. E., Klompen, J. S. H., Keirans, J. E. & Black, W. C. IV (1996). Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. Journal of Medical Entomology 33, 78–89.CrossRefGoogle ScholarPubMed
Norris, D. E., Klompen, J. S., Keirans, J. E., et al. (1997). Taxonomic status of Ixodes neotomae and I. spinipalpis (Acari: Ixodidae) based on mitochondrial DNA evidence. Journal of Medical Entomology 34, 696–703.CrossRefGoogle ScholarPubMed
Nuttall, G. H. F. & Warburton, C. (1911). Ticks: A Monograph of the Ixodoidae, Part II – Ixodidae.Cambridge, UK: Cambridge University Press.Google Scholar
Oliver, J. H. Jr (1989). Biology and systematics of ticks (Acari: Ixodida). Annual Review of Ecology and Systematics 20, 397–430.CrossRefGoogle Scholar
Poinar, G. Jr & Brown, A. E. (2003). A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Systematic Parasitology 54, 199–205.CrossRefGoogle Scholar
Pomerantsev, B. I. (1948). Basic directions of evolution in the Ixodoidea. Parazitologicheskii Sbornik 10, 5–19.Google Scholar
Rich, S. M., Caporale, D. A., Telford, S. R. III, et al. (1995). Distribution of the Ixodes ricinus-like ticks of eastern North America. Proceedings of the National Academy of Sciences of the USA 92, 6284–6288.CrossRefGoogle ScholarPubMed
Rich, S. M., Rosenthal, B. M., Telford, S. R. III, et al. (1997). Heterogeneity of the internal transcribed spacer (ITS-2) region within individual deer ticks. Insect Molecular Biology 6, 123–129.CrossRefGoogle ScholarPubMed
Robbins, R. G., Karesh, W. B., Calle, P. P., et al. (1998). First records of Hyalomma aegyptium (Acari: Ixodida: Ixodidae) from the Russian spur-thighed tortoise, Testudo graeca nikolskii, with an analysis of tick population dynamics. Journal of Parasitology 84, 1303–1305.CrossRefGoogle ScholarPubMed
Roehrdanz, R. L., Degrugillier, M. E. & Black, W. C. IV (2002). Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: applications to arthropod phylogeny and evolution. Molecular Biology and Evolution 19, 841–849.CrossRefGoogle ScholarPubMed
Schmitz, J., Ohme, M. & Zischler, H. (2002). The complete mitochondrial sequence of Tarsius bancanus: evidence for an extensive nucleotide compositional plasticity of primate mitochondrial DNA. Molecular Biology and Evolution 19, 544–553.CrossRefGoogle ScholarPubMed
Shao, R. & Barker, S. C. (2007). Mitochondrial genomics of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134, 153–167.CrossRefGoogle Scholar
Shao, R., Aoki, Y., Mitani, H., et al. (2004). The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years. Insect Molecular Biology 13, 219–224.CrossRefGoogle ScholarPubMed
Shao, R., Barker, S. C., Mitani, H., Aoki, Y. & Fukunaga, M. (2005). Evolution of duplicate control regions in the mitochondrial genomes of Metazoa: a case study with Australasian Ixodes ticks. Molecular Biology and Evolution 22, 620–629.CrossRefGoogle ScholarPubMed
Shao, R., Fukunaga, M. & Barker, S. C. (2005). The mitochondrial genomes of ticks and their kin: a review plus the description of the mitochondrial genomes of Ambylomma triguttatum and Ornithodoros porcinus. In Proceedings, 5th International Congress on Ticks and Tick-Borne Diseases, Neuchatel, Switzerland, August 2005, pp. 210–214.
Sonenshine, D. E. (1993). Biology of Ticks, vol. 2. Oxford, UK: Oxford University Press.Google Scholar
Stothard, D. R. & Fuerst, P. A. (1995). Evolutionary analysis of the spotted fever and typhus group of Rickettsia using 16S rRNA gene sequences. Systematic and Applied Microbiology 18, 52–61.CrossRefGoogle Scholar
Szabo, M. P., Mangold, A. J., Joao, C. F., Bechara, G. H. and Guglielmone, A. A. (2005). Biological and DNA evidence of two dissimilar populations of the Rhipicephalus sanguineus tick group (Acari: Ixodidae) in South America. Veterinary Parasitology 130, 131–140.CrossRefGoogle Scholar
Ushijima, Y., Oliver, J. H. Jr., et al. (2003). Mitochondrial sequence variation in Carios capensis (Neumann), a parasite of seabirds, collected on Torishima Island in Japan. Journal of Parasitology 89, 196–198.CrossRefGoogle Scholar
Venzal, J. M., Castro, O., Cabrera, P., et al. (2001). Ixodes (Haemixodes) longiscutatum Boero (new status) and I. (H.) uruguayensis Kohls & Clifford, a new synonym of I. (H.) longiscutatum (Acari: Ixodidae). Memórias do Instituto Oswaldo Cruz 96, 1121–1122.CrossRefGoogle Scholar
Vermeil, C., Marjolet, M. & Vermeil, F. (1997). Ornithodoros (Alectorobius) cheikhi n. sp. (Acarina, Ixodoidea, Argasidae, Ornithodoros (Alectorobius) capensis group) from tern nesting site in Mauritania. Bulletin de la Société des Sciences Naturelles de l'ouest de la France 19, 66–76.Google Scholar
Vickers-Rich, P. & Rich, T. H. (1993). Wildlife of Gondwana. Chatswood, Australia: Reed.Google Scholar
Walker, J. B., Keirans, J. E. & Horak, I. G. (2000). The Genus Rhipicephalus (Acari, Ixodidae): A Guide to the Brown Ticks of the World. Cambridge, UK: Cambridge University Press.Google Scholar
Walter, D. E. & Proctor, H. C. (1998). Feeding behaviour and phylogeny: observations on early derivative Acari. Experimental and Applied Acarology 22, 39–50.CrossRefGoogle Scholar
Walter, D. E. & Proctor, H. C. (1999). Mites: Ecology, Evolution and Behaviour. Sydney, Australia: University of New South Wales Press.
Wesson, D. M. & Collins, F. H. (1992). Sequence and secondary structure of 5.8S rRNA in the tick Ixodes scapularis. Nucleic Acids Research 20, 11.CrossRefGoogle ScholarPubMed
Wesson, D. M., McLain, D. K., Oliver, J. H. Jr, Piesman, J. & Collins, F. H. (1993). Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proceedings of the National Academy of Sciences of the USA 90, 10221–10225.CrossRefGoogle ScholarPubMed
Wilson, K., Cahill, V., Ballment, E. & Benzie, J. (2000). The complete sequence of the mitochondrial genome of the crustacean Penaeus monodon: are malacostracan crustaceans more closely related to insects than to branchiopods?Molecular Biology and Evolution 17, 863–874.CrossRefGoogle ScholarPubMed
Xu, G., Fang, Q. Q., Keirans, J. E. & Durden, L. A. (2003). Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. Journal of Parasitology 89, 452–457.CrossRefGoogle ScholarPubMed
Zahler, M., Filippova, N. A., Morel, P. C., Gothe, R. & Rinder, H. (1997). Relationships between species of the Rhipicephalus sanguineus group: a molecular approach. Journal of Parasitology 83, 302–306.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×