Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T01:21:46.978Z Has data issue: false hasContentIssue false

17 - Analysing and predicting the occurrence of ticks and tick-borne diseases using GIS

Published online by Cambridge University Press:  21 August 2009

M. Daniel
Affiliation:
School of Public Health Institute for Postgraduate Medical Education 100 05 Prague 10 Ruska 85 Czech Republic
J. Kolář
Affiliation:
Department of Applied Geoinformatics Faculty of Sciences Charles University 128 43 Prague 2 Albertov 6 Czech Republic
P. Zeman
Affiliation:
State Veterinary Institute 165 03 Prague 6 Sidlistni 136/24 Czech Republic
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

For many years, scientific research has considered the relationships between the landscape and human health. Increasing rates of environmental changes are dramatically altering patterns of human health at the community, regional and global scales. The emergence of tick-borne diseases (TBD) illustrates the impact that environmental changes can have on human health. Integration of modern geoinformation technologies into landscape epidemiology can contribute significantly to the development and implementation of new disease-surveillance tools. The theory of landscape epidemiology offers the opportunity to use the landscape as a key to the identification of the spatial and temporal distribution of disease risk. Key environmental elements – including elevation, temperature, rainfall and humidity – influence the presence, development, activity and longevity of pathogens, vectors and zoonotic reservoirs of infection, and their interactions with humans (Meade, Florin & Gesler, 1988). The same environmental variables influence distribution of vegetation type as landscape elements and patterns of disease. Remote sensing (RS) from aircraft and satellites can be used to describe landscape elements that influence the patterns and prevalence of disease. In addition, geographical information systems (GIS) provide tools for modelling spatially their occurrence in space and time.

Ticks are ideally suited to GIS and RS applications owing to their close ties with the ecosystem. This relationship is determined by: (1) the type of host–parasite association (most important vector species are three-host ticks); (2) specific requirements of the microclimate; and (3) dependence on clearly defined types of plant associations which both reflect the microclimatic conditions of a habitat occupied by ticks, and also influence them.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 377 - 407
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balát, F. & Rosický, B. (1954). Birds in lowland forests, their role and importance for the existence of natural foci of diseases. československá Parasitologie 1, 22–44. (In Czech.)Google Scholar
Baptista, S., Quaresma, A., Aires, T., et al. (2004). Lyme borreliosis spirochetes in questing ticks from mainland Portugal. International Journal of Medical Microbiology Suppl. 293, 109–116.Google ScholarPubMed
Barnes, C. M. (1991). An historical perspective on the applications of remote sensing to public health. Preventive Veterinary Medicine 11, 163–166.CrossRefGoogle Scholar
Beck, L. R., Lobitz, B. M. & Wood, B. L. (2000). Remote sensing and human health: new sensors and new opportunities. Emerging Infectious Diseases 6, 217–227.CrossRefGoogle ScholarPubMed
Benda, R. (1958). The common tick Ixodes ricinus L. as a reservoir and vector of tick-borne encephalitis. I. Survival of the virus (strain B 3) during the development of the tick under laboratory conditions. Journal of Hygiene, Epidemiology, Microbiology and Immunology 2, 314–330.Google Scholar
Bithell, J. F. (1990). An application of density estimation to geographical epidemiology. Statistics in Medicine 9, 691–701.CrossRefGoogle ScholarPubMed
Blaškovič, D. (1967). Studies on tick-borne encephalitis. Bulletin of the World Health Organization 36 (Suppl. 1), 1–95.Google Scholar
Brownstein, J. S., Holford, T. R. & Fish, D. (2003). A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environmental Health Perspectives 111, 1152–1157.CrossRefGoogle ScholarPubMed
Carey, A. B., Mclean, R. G. & Maupin, G. O. (1980). The structure of a Colorado tick fever ecosystem. Ecological Monographs 50, 131–151.CrossRefGoogle Scholar
CDC (Centers for Disease Control and Prevention) (1994). Addressing Emerging Infectious Disease Threats: A Strategy for the United States. Atlanta, GA: US Department of Health and Human Services, CDC.
CDC (Centers for Disease Control and Prevention) (1998). Preventing Emerging Infectious Diseases: A Strategy for the 21st Century. Atlanta, GA: US Department of Health and Human Services, CDC.
Chaput, E. K., Meek, J. I. & Heimer, R. (2002). Spatial analysis of human granulocytic ehrlichiosis near Lyme, Connecticut. Emerging Infectious Diseases 8, 943–948.CrossRefGoogle ScholarPubMed
Chemini, C. & Rizzoli, A. (2003). Land use change and biodiversity conservation in the Alps. Journal of Mountain Ecology (Suppl.) 7, 1–7.Google Scholar
Cliff, A. D. & Haggett, P. (1988). Atlas of the Distribution of Diseases: Analytical Approaches to Epidemiological Data. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Cooper, J. W. & Houle, J. U. (1991). Modelling disease vector habitats using thematic mapper data: identifying Dermacentor variabilis habitats in Orange County, North Carolina. Preventive Veterinary Medicine 11, 353–354.CrossRefGoogle Scholar
Cumming, G. S. (2000 a). Using habitat models to map diversity: pan-African species richness of ticks (Acari: Ixodida). Journal of Biogeography27, 425–440.CrossRefGoogle Scholar
Cumming, G. S. (2000 b). Using between-model comparisons to fine-tune linear models of species ranges. Journal of Biogeography27, 441–455.CrossRefGoogle Scholar
Cumming, G. S. (2002). Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 83, 255–268.CrossRefGoogle Scholar
Dale, M. R. T., Dixon, P., Fortin, M.-J., et al. (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25, 558–577.CrossRefGoogle Scholar
Daniel, M. & Dusbábek, F. (1994). Micrometeorological and microhabitat factors affecting maintenance and dissemination of tick-borne diseases in the environment. In Ecological Dynamics of Tick-Borne Zoonoses eds. Sonenshine, D. E. & Mather, T. N., pp. 91–138. Oxford, UK: Oxford University Press.Google Scholar
Daniel, M. & Kolář, J. (1990). Using satellite data to forecast the occurence of the common tick Ixodes ricinus (L.). Journal of Hygiene, Epidemiology, Microbiology and Immunology 34, 243–252.Google Scholar
Daniel, M. & Kříž, B. (2002). Tick-Borne Encephalitis in the Czech Republic, vol. 1, Predictive Maps of Ixodes ricinus Tick High-Occurrence Habitats and a Tick-Borne Encephalitis Risk Assessment in Czech Regions; vol. 2, Maps of Tick-Borne Encephalitis Incidence in the Czech Republic in 1971–2000, Project WHO/EC Climate Change and Adaptation Strategies for Human Health in Europe, EVK-2-2000-0070. Prague: National Institute of Public Health.Google Scholar
Daniel, M. & Rosický, B. (1989). Medical Entomology and Environment. Prague: Academia. (In Czech.)Google Scholar
Daniel, M., Danielová, V., Kříž, B. & Beneš, Č. (2006). Tick-borne encephalitis. In Climate Change and Adaptation Strategies for Human Health, eds. Menne, B. & Ebi, K. L., pp. 189–205. Darmstadt, Germany: Steinkopff.Google Scholar
Daniel, M., Kolář, J. & Zeman, P. (2004). GIS tools for tick and tick-borne disease occurrence. Parasitology 129 (Suppl.), S329–S352.CrossRefGoogle ScholarPubMed
Daniel, M., Kolář, J., Zeman, P., Pavelka, K. & Sádlo, J. (1998). Predictive map of Ixodes ricinus high-incidence habitats and a tick-borne encephalitis risk assessment using satellite data. Experimental and Applied Acarology 22, 417–433.CrossRefGoogle Scholar
Daniel, M., Kolář, J., Zeman, P., Pavelka, K. & Sádlo, J. (1999). Tick-borne encephalitis and Lyme borreliosis: comparison of habitat risk assessments using satellite data. Central European Journal of Public Health7, 35–39.Google ScholarPubMed
Danielová, V., Holubová, J. & Daniel, M. (2002 a). Tick-borne encephalitis virus prevalence in Ixodes ricinus ticks collected in high risk habitats of the South-Bohemian region of the Czech Republic. Experimental and Applied Acarology 26, 145–151.CrossRefGoogle ScholarPubMed
Danielová, V., Holubová, J., Pejčoch, M. & Daniel, M. (2002 b). Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitologia 49, 323–325.CrossRefGoogle ScholarPubMed
Garine-Wichatitsky, M. (2000). Assessing infestation risk by vectors: spatial and temporal distribution of African ticks at the scale of a landscape. Annals of the New York Academy of Sciences 916, 223–232.Google ScholarPubMed
Diamond, I. (1992). Population counts in small areas. In Geographical and Environmental Epidemiology: Methods for Small-Area Studies, eds. Elliot, P., Cuzick, J., English, D. & Stern, R., pp. 98–105. Oxford, UK: Oxford University Press.Google Scholar
Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.Google Scholar
Dister, S. W., Fish, D., Bros, S., Frank, D. H. & Wood, B. L. (1997). Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. American Journal of Tropical Medicine and Hygiene57, 687–692.CrossRefGoogle ScholarPubMed
Duffy, D. C., Clark, D. D., Campbell, , S. R., et al. (1994). Landscape patterns of abundance of Ixodes scapularis (Acari: Ixodidae) on Shelter Island, New York. Journal of Medical Entomology31, 875–879.CrossRefGoogle ScholarPubMed
Eisen, R. J., Eisen, L. & Lane, R. S. (2005). Remote sensing (Normalized Difference Vegetation Index) classification of risk versus minimal risk habitats for human exposure to Ixodes pacificus (Acari: Ixodidae) nymphs in Mendocino County, California. Journal of Medical Entomology42, 75–81.CrossRefGoogle ScholarPubMed
Estrada-Peña, A. (1998). Geostatistics and remote sensing as predictive tools of tick distribution: a cokriging system to estimate Ixodes scapularis (Acari: Ixodidae) habitat suitability in the United States and Canada from Advanced Very High Radiometer satellite imagery. Journal of Medical Entomology 35, 989–995.CrossRefGoogle ScholarPubMed
Estrada-Peña, A. (1999 a). Geostatistics and remote sensing using NOAA–AVHR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. Veterinary Parasitology 81, 73–82.CrossRefGoogle Scholar
Estrada-Peña, A. (1999 b). Geostatistics as predictive tools to estimate Ixodes ricinus (Acari: Ixodidae) habitat suitability in the western Palearctic from AVHRR satellite imagery. Experimental and Applied Acarology 23, 337–349.CrossRefGoogle Scholar
Estrada-Peña, A. (2001 a). Distribution, abundance, and habitat preferences of Ixodes ricinus (Acari: Ixodidae) in northern Spain. Journal of Medical Entomology38, 361–370.CrossRefGoogle Scholar
Estrada-Peña, A. (2001 b). Climate warming and changes in habitat suitability for Boophilus microplus (Acari: Ixodidae) in Central America. Journal of Parasitology87, 978–987.CrossRefGoogle Scholar
Estrada-Peña, A. (2002 a). Increasing habitat suitability in the United States for the tick that transmits Lyme disease: a remote sensing approach. Environmental Health Perspectives 110, 635–640.CrossRefGoogle ScholarPubMed
Estrada-Peña, A. (2002 b). A simulation model for environmental population densities, survival rates and prevalence of Boophilus decoloratus (Acari: Ixodidae) using remotely sensed environmental information. Veterinary Parasitology 104, 51–78.CrossRefGoogle ScholarPubMed
Estrada-Peña, A. (2003 a). Climate change decreases habitat suitability for some species (Acari: Ixodidae) in South Africa. Onderstepoort Journal of Veterinary Research70, 79–93.Google Scholar
Estrada-Peña, A. (2003 b). The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in northern Spain. Ecography 26, 661–671.CrossRefGoogle Scholar
Estrada-Peña, A., Acedo, Sánchez C., Quílez, J. & Cacho, Del E. (2005). A retrospective study of climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the Americas. Global Ecology and Biogeography 14, 565–573.CrossRefGoogle Scholar
Foley, J. E., Queen, E. V., Sacks, B. & Foley, P. (2005). GIS-facilitated spatial epidemiology of tick-borne diseases in coyotes (Canis latrans) in northern and coastal California. Comparative Immunology, Microbiology and Infectious Diseases 28, 197–212.CrossRefGoogle ScholarPubMed
Frank, C., Fix, A. D., Pena, C. A. & Strickland, G. T. (2002). Mapping Lyme disease incidence for diagnostic and preventive decisions, Maryland. Emerging Infectious Diseases 8, 427–429.CrossRefGoogle ScholarPubMed
Gern, L., Estrada-Peña, A., Frandsen, F., et al. (1998). European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt für Bakteriologie 287, 196–204.CrossRefGoogle ScholarPubMed
Gilot, B. (1985). Bases biologiques, écologiques et cartographiques pour l'étude des maladies transmises par les tiques (Ixodidae et Argasidae) dans les Alpes Françaises et leur avant-pays. Unpublished Ph.D. thesis, University of Grenoble, France.
Gilot, B., Pautou, G. & Lachet, B. (1981). La cartographie des populations de tiques exophiles à visée épidemiologique: application à la fièvre boutonneuse méditerranéenne essai à 1/200000 dans la basse valleée du Rhône. Documents de Cartographie Ecologique (Grenoble) 34, 103–111.Google Scholar
Gilot, B., Pautou, G. & Moncada, E. (1975). L'analyse de la végétation appliqué à la détection des populations de tiques exophiles dans le Sud-Est de la France: l'example d'Ixodes ricinus (Linné, 1758). Acta Tropica 32, 340–347.Google Scholar
Gilot, B., Pautou, G., Moncada, E., Lachet, B. & Christin, J. G. (1979). La cartographie des populations de tiques exophiles par le biaias de la végétation: bases écologiques, intérêt épidemiologique. Documents de Cartographie Ecologique (Grenoble) 22, 65–80.Google Scholar
Glass, G. E., Amerasinghe, F. P., Morgan, J. M. & Scott, T. W. (1994). Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. American Journal of Tropical Medicine and Hygiene51, 538–544.CrossRefGoogle ScholarPubMed
Glass, G. E., Schwartz, B. S., Morgan, J. M., et al. (1995). Environmental risk factors for Lyme disease identified with Geographic Information Systems. American Journal of Public Health85, 944–948.CrossRefGoogle ScholarPubMed
Glavanakov, S., White, D. J., Caraco, T., et al. (2001). Lyme disease in New York State: spatial pattern at a regional scale. American Journal of Tropical Medicine and Hygiene65, 538–554.CrossRefGoogle Scholar
Gray, J. S., Kahl, O., Robertson, J. N., et al. (1998). Lyme borreliosis habitat assessment. Zentralblatt für Bakteriologie 287, 211–228.CrossRefGoogle ScholarPubMed
Green, R. M., Rogers, D. J. & Randolph, S. E. (2000). The use of satellite imagery to predict foci of tick-borne encephalitis. In Proceedings of the 3rd International Conference Ticks and Tick-Borne Pathogens: Into the 21st Century, eds. Kazimírová, M., Labuda, M. & Nuttall, P.., pp. 209–213.Google Scholar
Guerra, M., Walker, E., Jones, C., et al. (2002). Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerging Infectious Diseases 8, 289–297.CrossRefGoogle ScholarPubMed
Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.CrossRefGoogle Scholar
Hay, S. L, Randolph, S. E. & Rogers, D. J. (eds.) (2000). Remote sensing and Geographical Information Systems in epidemiology. Advances in Parasitology 47, 1–357.CrossRefGoogle Scholar
Hejný, S. & Rosický, B. (1965). Beziehungen der Encephalitis zu den natürlichen Pflanzengesellschaften. In Biosoziologie, ed. Tuexen, R., pp. 341–347. The Hague, Netherlands: Junk Verlag.Google Scholar
Hugh-Jones, M. (1989). Applications of remote sensing to the identification of the habitats of parasites and disease vectors. Parasitology Today 5, 244–251.CrossRefGoogle ScholarPubMed
Hugh-Jones, M. (ed.) (1991). Applications of remote sensing to epidemiology and parasitology. Preventive Veterinary Medicine 11, 155–376.Google Scholar
Hugh-Jones, M. E., Barre, N., Nelson, G., et al. (1988). Remote recognition of Amblyomma variegatum habitats in Guadeloupe using LANDSAT-TM imagery. Acta Veterinaria Scandinavica (Suppl.) 84, 259–261.Google ScholarPubMed
Hugh-Jones, M., Barre, N., Nelson, G., et al. (1992). Landsat–TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe. Remote Sensing of Environment 40, 43–55.CrossRefGoogle Scholar
Hungerford, L. L. (1991). Use of spatial statistics to identify and test significance in geographic disease patterns. Preventive Veterinary Medicine 11, 273–282.CrossRefGoogle Scholar
Immuno, (1997). Tick-Borne Encephalitis (TBE) and its Immunoprophylaxis. Vienna: Immuno A. G.Google Scholar
Isaaks, E. H. & Srivastava, R. M. (1989). Applied Geostatistics. Oxford, UK: Oxford University Press.Google Scholar
Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. (1998). Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026.CrossRefGoogle ScholarPubMed
Jones, L. D., Davies, C. R., Steele, G. M. & Nuttall, P. A. (1987). A novel mode of arbovirus transmission involving a non-viremic host. Science 237, 775–777.CrossRefGoogle Scholar
Journel, A. G. & Huibregts, C. J. (1978). Mining Geostatistics. New York: Academic Press.Google Scholar
Kelsall, J. E. & Diggle, P. J. (1995). Non-parametric estimation of spatial variation in relative risk. Statistics in Medicine 14, 2335–2342.CrossRefGoogle ScholarPubMed
Kitron, U. & Kazmierczak, J. J. (1997). Spatial analysis of the distribution of Lyme disease in Wisconsin. American Journal of Epidemiology145, 558–566.CrossRefGoogle ScholarPubMed
Kitron, U. & Mannelli, A. (1994). Modeling the ecological dynamics of tick-borne zoonoses. In Ecological Dynamics of Tick-Borne Zoonoses, eds. Sonenshine, D. E. & Mather, T. N., pp. 198–239. Oxford, UK: Oxford University Press.Google Scholar
Kitron, U., Bouseman, J. K. & Jones, C. J. (1991). Use of the ARC/INFO GIS to study the distribution of Lyme disease ticks in an Illinois county. Preventive Veterinary Medicine 11, 243–248.CrossRefGoogle Scholar
Kitron, U., Jones, C. J., Houseman, J. K., Nelson, J. A. & Baumgartner, D. L. (1992). Spatial analysis of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle County, Illinois. Journal of Medical Entomology29, 259–266.CrossRefGoogle ScholarPubMed
Kolonin, G. V. (1978). World Distribution of 1xodid Ticks (Genus Haemaphysalis). Moscow, USSR: Nauka. (In Russian.)Google Scholar
Kolonin, G. V. (1981). World Distribution of Ixodid Ticks (Genus Ixodes). Moscow, USSR: Nauka. (In Russian.)Google Scholar
Kolonin, G. V. (1983). World Distribution of Ixodid Ticks (Genera Hyalomma, Aponomma, Amblyomma). Moscow, USSR: Nauka. (In Russian.)Google Scholar
Kolonin, G. V. (1984). World Distribution of Ixodid Ticks (Genera Dermacentor, Anocentor, Cosmiomma, Dermacentonomma, Nosomma, Rhipicentor, Rhipicephalus, Boophilus, Margaropus, Anomalohimalaya). Moscow, USSR: Nauka. (In Russian.)Google Scholar
Korenberg, E. I. (1973). Methodological principles of mapping the occurrence of Ixodid ticks. In Proceedings of 3rd International Congress of Acarology, eds. Daniel, M. & Rosický, B., pp. 575–577.CrossRefGoogle Scholar
Korenberg, E. I. (1983). What Is a Natural Focus?Moscow, USSR: Znanie. (In Russian.)Google Scholar
Korenberg, E. I. & Kovalevsky, J. V. (1981). Regional classification of the tick-borne encephalitis area of distribution. Scientific and TechnicalResults, Series Medical Geography 11, 1–148. (In Russian.)Google Scholar
Krejcir, P. (2000). A maximum likelihood estimator of an inhomogeneous Poisson point process intensity using beta splines. Kybernetika 36, 455–464.Google Scholar
Kucheruk, V. V. & Rosický, B. (1984). Natural focality of infectious diseases: basic terms and their explanation. Medical Parasitology and Parasitological Diseases 2, 7–16. (In Russian.)Google Scholar
Kulldorff, M. & Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Statistics in Medicine 14, 799–810.CrossRefGoogle ScholarPubMed
Kuzikov, I. V., Korenberg, E. I., Kovalevsky, J. V. & Rodman, L. S. (1982). The principles of average scale mapping of distribution of the ixodid ticks on the basis of aerophoto-materials. Zoologiocheskii Zhurnal 61, 1802–1814. (In Russian.)Google Scholar
Lam, N. S. (1983). Spatial interpolation methods: a review. American Geographer 10, 129–149.Google Scholar
Lawson, A. B. (2001). Statistical Methods in Spatial Epidemiology. Chichester, UK: John Wiley.Google Scholar
Lawson, A. B. & Williams, F. L. R. (1993). Applications of extraction mapping in environmental epidemiology. Statistics in Medicine 12, 1249–1258.CrossRefGoogle ScholarPubMed
Lawson, A. B., Biggeri, A., Böhning, D., et al. (1999). Disease Mapping and Risk Assessment for Public Health. Chichester, UK: John Wiley.Google Scholar
Lindgren, E. & Jaenson, T. G. T. (2006). Lyme borreliosis in Europe: influences of climate and climate change, epidemiology, ecology and adaptation measures. In Climate Change and Adaptation Strategies for Human Health, eds. Menne, B. & Ebi, K. L., pp. 157–188. Darmstadt, Germany: Steinkopff.Google Scholar
Martyn, K. P. (1988). Provisional Atlas of the Ticks (Ixodoidea) of the British Isles. Huntingdon, UK: Institute of Terrestrial Ecology.Google Scholar
Meade, M. S., Florin, J. W. & Gesler, W. M. (1988). Medical Geography. New York: Guilford Press.Google Scholar
Menne, B. & Ebi, K. L. (eds.) (2006). Climate Change and Adaptation Strategies for Human Health. Darmstadt, Germany: Steinkopff.Google Scholar
Merler, S., Furlanello, C., Chemini, C. & Nicolini, G. (1996). Classification tree methods for analysis of mesoscale distribution of Ixodes ricinus (Acari: Ixodidae) in Trentino, Italian Alps. Journal of Medical Entomology33, 888–893.CrossRefGoogle ScholarPubMed
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrica 37, 17–23.CrossRefGoogle ScholarPubMed
Nicholson, M. C. & Mather, T. N. (1996). Methods for evaluating Lyme disease risk using geographic information systems and geospatial analysis. Journal of Medical Entomology33, 711–720.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Perry, B. D., Kruska, R. & Kundert, K. (1991). The use of climate data interpolation in estimating the distribution of Amblyomma variegatum in Africa. Preventive Veterinary Medicine 11, 365–366.CrossRefGoogle Scholar
Connell, O' S., Granström, M., Gray, J. S. & Stanek, G. (1998). Epidemiology of European Lyme borreliosis. Zentralblatt für Bakteriologie 287, 229–240.CrossRefGoogle Scholar
Oden, N. (1995). Adjusting Moran's I for population density. Statistics in Medicine 14, 17–26.CrossRefGoogle ScholarPubMed
Olwoch, J. M., Rautenbach, C. J., W., Erasmus, B. F. N., Engelbrecht, F. A. & Jaarsveld, A. S. (2003). Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfaces. Journal of Biogeography30, 1221–1232.CrossRefGoogle Scholar
Pavlovsky, E. N. (1939). Natural focality of infectious diseases. Vestnik Akademii Nauk SSSR 10, 98–108. (In Russian.)Google Scholar
Pavlovsky, E. N. (1946). Manual of Human Parasitology, vol. 1. Moscow–Leningrad, USSR: Publishing House of the Academy of Sciences of the USSR. (In Russian.)Google Scholar
Pavlovsky, E. N. (1948). Manual of Human Parasitology, vol. 2. Moscow–Leningrad, USSR: Publishing House of the Academy of Sciences of the USSR. (In Russian.)Google Scholar
Pavlovsky, E. N. (1964). Natural Nidality of Transmissible Diseases in Relation to Landscape Epidemiology of Zooanthroponoses. Moscow, USSR: Peace Publishers.Google Scholar
Perry, B. D., Kruska, R., Lessard, R., Norval, R. A. I. & Kundert, K. (1991). Estimating the distribution and abundance of Rhipicephalus appendiculatus in Africa. Preventive Veterinary Medicine 11, 261–268.CrossRefGoogle Scholar
Prokhorov, B. B., Baiborodin, V. N., Vershinina, T. A. & Sotchavy, V. V. (1974). Experience in Ixodid Ticks Mapping on the Territory of Asiatic Russia. Irkutsk, USSR: Academy of Sciences of the USSR. (In Russian.)Google Scholar
Radvan, R., Hanzák, J., Hejný, S., Rehn, F. & Rosický, B. (1960). Demonstration of elementary foci of tick-borne infections on the basis of microbiological, parasitological and biocenological investigations. Journal of Hygiene, Epidemiology, Microbiology and Immunology 4, 81–93.Google ScholarPubMed
Rand, P. W., Lacombe, E. H., Smith, R. P., Gensheimer, K. & Dennis, D. T. (1996). Low seroprevalence of human Lyme disease near a focus of high entomologic risk. American Journal of Tropical Medicine and Hygiene55, 160–164.CrossRefGoogle Scholar
Randolph, S. E. (1993). Climate, satellite imagery and seasonal abundance of the tick Rhipicephalus appendiculatus in Southern Africa: a new perspective. Medical and Veterinary Entomology 7, 243–258.CrossRefGoogle ScholarPubMed
Randolph, S. E. (2000). Ticks and tick-borne disease systems in space and from space. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 217–243. London: Academic Press.Google Scholar
Randolph, S. E. & Rogers, D. J. (2000). Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proceedings of the Royal Society of London B 267, 1741–1744.CrossRefGoogle ScholarPubMed
Randolph, S. E., Miklisová, D., Lysý, D., Rogers, D. J. & Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177–186.CrossRefGoogle ScholarPubMed
Rizzoli, A., Merler, S., Furlanello, C. & Genchi, C. (2002). Geographical Information Systems and bootstrap aggregation (bagging) of tree-based classifiers for Lyme disease risk prediction in Trentino, Italian Alps. Journal of Medical Entomology39, 485–492.CrossRefGoogle ScholarPubMed
Robinson, T. P. (2000). Spatial statistics and geographical information systems in epidemiology and public health. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 81–127. London: Academic Press.Google Scholar
Rogers, A. (1974). Statistical Analysis of Spatial Dispersion: The Quadrat Method. London: Pion.Google Scholar
Rogers, D. J. (2000). Satellites, space, time and the African trypanosomiases. In Remote Sensing and Geographical Information Systems in Epidemiology, eds. Baker, J. R., Muller, R. & Rollinson, D., pp. 129–171. London: Academic Press.Google Scholar
Rogers, D. J. & Randolph, S. E. (1993). Distribution of tsetse and ticks in Africa, past, present and future. Parasitology Today9, 266–271.CrossRefGoogle Scholar
Rosický, B. (1967). Natural foci of diseases. In Infectious Diseases: Their Evolution and Eradication, ed. Cockburn, T. A., pp. 108–126. Springfield, IL: Charles C. Thomas.Google Scholar
Sonenshine, D. E., Peters, A. H. & Stout, J. I. (1972). Rocky Mountain spotted fever in relation to vegetation in the Eastern United States, 1951–1971. American Journal of Epidemiology96, 59–69.CrossRefGoogle ScholarPubMed
Sutherst, R. W. (2001). The vulnerability of animal and human health to parasites under global change. International Journal for Parasitology31, 933–948.CrossRefGoogle ScholarPubMed
Sutherst, R. W. & Maywald, G. F. (1985). A computerized system for matching climates in ecology. Agriculture Ecosystems and Environment 13, 281–299.CrossRefGoogle Scholar
Thomsen, I. (1991). Population data for small area studies. In Data Requirements and Methods for Analysing Spatial Patterns of Disease in Small Areas, pp. 10–14. Copenhagen: World Health Organization. Available online at http://whqlibdoc.who.int/euro/-1993/EUR_ICP_CEH_087_A_1.pdf/Google Scholar
Beurden, A. U. C. J. & Hilferink, M. T. A. (1993). Spatial Analysis with GIS at RIVM: A Background Overview of Spatial Analysis within GIS in research for environment and public health, Report No. 421503002. Bilthoven, the Netherlands: National Institute of Public Health and Environmental Protection.Google Scholar
Vershinina, T. A. (1985). Mapping of Ixodid Ticks' Distribution and Seasonal Activity. Novosibirsk, USSR: Nauka. (In Russian.)Google Scholar
Whittie, P. S., Drane, W. & Aldrich, T. E. (1996). Classification methods for denominators in small areas. Statistics in Medicine 15, 1921–1926.3.0.CO;2-3>CrossRefGoogle Scholar
Zeman, P. (1997). Objective assessment of risk maps of tick-borne encephalitis and Lyme borreliosis based on spatial patterns of located cases. International Journal of Epidemiology26, 1121–1130.CrossRefGoogle ScholarPubMed
Zeman, P. (1998). Borrelia-infection rates in tick and insect vectors accompanying human risk of acquiring Lyme borreliosis in a highly endemic region in Central Europe. Folia Parasitologica 45, 319–325.Google Scholar
Zeman, P. (1999). A spatial analysis of uncertain occurence of Lyme borreliosis. Zentralblatt für Bakteriologie 289, 717–719.CrossRefGoogle Scholar
Zeman, P., Vitkova, V. & Markvart, K. (1990). Joint occurence of tick-borne encephalitis and Lyme borreliosis in the Central Bohemian region of Czechoslovakia. československá Epidemiologie, Mikrobiologie a Imunologie 39, 95–105.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×