Published online by Cambridge University Press: 06 November 2009
If a charged particle species of a collisionless plasma possesses a non-Maxwellian velocity distribution function, a short wavelength normal mode of the system may grow in amplitude. This is a microinstability; its theory is well described by the Vlasov equation. The purpose of this monograph is to describe in an accurate way the theory of damped normal modes and a limited number of microinstabilities that may arise in various space plasma environments.
The two words that best characterize the work described in this book are “limited” and “accurate.” In order to keep the discussion limited, I have chosen idealized, not observed, distribution functions. Many spacecraft have provided excellent observations of electron and ion distributions in the Earth's magnetosphere and nearby solar wind. The tremendous variety of these distributions makes it difficult to select a few for special representation. My choice here has been to use Maxwellian or bi-Maxwellian distributions with field-aligned drifts to represent some of the more important general free energy sources. Although the resulting instabilities may not correspond to any particular data set, I hope that each one represents the general properties of a very broad class of data.
To provide accuracy, I have followed the same procedure for each distribution function and plasma model. After assuming a zeroth-order distribution, I derive (or at least explicitly state) the associated dispersion equation without approximation. Because I deal with linear theory throughout this book, it is always straightforward to do this, although the algebra gets tiresome at times.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.