Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Probability theory: basic notions
- 2 Maximum and addition of random variables
- 3 Continuous time limit, Ito calculus and path integrals
- 4 Analysis of empirical data
- 5 Financial products and financial markets
- 6 Statistics of real prices: basic results
- 7 Non-linear correlations and volatility fluctuations
- 8 Skewness and price-volatility correlations
- 9 Cross-correlations
- 10 Risk measures
- 11 Extreme correlations and variety
- 12 Optimal portfolios
- 13 Futures and options: fundamental concepts
- 14 Options: hedging and residual risk
- 15 Options: the role of drift and correlations
- 16 Options: the Black and Scholes model
- 17 Options: some more specific problems
- 18 Options: minimum variance Monte–Carlo
- 19 The yield curve
- 20 Simple mechanisms for anomalous price statistics
- Index of most important symbols
- Index
10 - Risk measures
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Probability theory: basic notions
- 2 Maximum and addition of random variables
- 3 Continuous time limit, Ito calculus and path integrals
- 4 Analysis of empirical data
- 5 Financial products and financial markets
- 6 Statistics of real prices: basic results
- 7 Non-linear correlations and volatility fluctuations
- 8 Skewness and price-volatility correlations
- 9 Cross-correlations
- 10 Risk measures
- 11 Extreme correlations and variety
- 12 Optimal portfolios
- 13 Futures and options: fundamental concepts
- 14 Options: hedging and residual risk
- 15 Options: the role of drift and correlations
- 16 Options: the Black and Scholes model
- 17 Options: some more specific problems
- 18 Options: minimum variance Monte–Carlo
- 19 The yield curve
- 20 Simple mechanisms for anomalous price statistics
- Index of most important symbols
- Index
Summary
Il faut entrer dans le discours du patient et non tenter de lui imposer le nôtre.
(Gérard Haddad, Le jour où Lacan m'a adopté.)Risk measurement and diversification
Measuring and controlling risks is now a major concern in many modern human activities. The financial markets, which act as highly sensitive (probably over sensitive) economical and political thermometers, are no exception. One of their rôles is actually to allow the different actors in the economic world to trade their risks, to which a price must therefore be given.
The very essence of the financial markets is to fix thousands of prices all day long, thereby generating enormous quantities of data that can be analysed statistically. An objective measure of risk therefore appears to be easier to achieve in finance than in most other human activities, where the definition of risk is vaguer, and the available data often very poor. Even if a purely statistical approach to financial risks is itself a dangerous scientists' dream (see e.g. Fig. 1.1), it is fair to say that this approach has not been fully exploited until the very recent years, and that many improvements can be still expected in the future, in particular concerning the control of extreme risks. The aim of this chapter is to introduce some classical ideas on financial risks, to illustrate their weaknesses, and to propose several theoretical ideas devised to handle more adequately the ‘rare events’ where the true financial risk resides.
- Type
- Chapter
- Information
- Theory of Financial Risk and Derivative PricingFrom Statistical Physics to Risk Management, pp. 168 - 185Publisher: Cambridge University PressPrint publication year: 2003