Book contents
- Frontmatter
- Contents
- Introduction
- 1 Reduction of the Maxwell–Schrödinger equations
- 2 Parameter swept across a steady bifurcation I
- 3 Parameter swept across a steady bifurcation II
- 4 Optical bistability: Constant input
- 5 Optical bistability: Variable input
- 6 Multimode optical bistability
- 7 Free-running multimode lasers
- 8 Antiphase dynamics
- 9 Laser stability
- 10 Second harmonic generation
- 11 Saturable absorbers
- 12 Transverse effects in optical bistability
- Index
Introduction
Published online by Cambridge University Press: 16 October 2009
- Frontmatter
- Contents
- Introduction
- 1 Reduction of the Maxwell–Schrödinger equations
- 2 Parameter swept across a steady bifurcation I
- 3 Parameter swept across a steady bifurcation II
- 4 Optical bistability: Constant input
- 5 Optical bistability: Variable input
- 6 Multimode optical bistability
- 7 Free-running multimode lasers
- 8 Antiphase dynamics
- 9 Laser stability
- 10 Second harmonic generation
- 11 Saturable absorbers
- 12 Transverse effects in optical bistability
- Index
Summary
Nonlinear optics is a fairly young science, having taken off with the advent of the laser in 1960. Nonlinear optics (NLO) deals with the interaction of electromagnetic waves and matter in the infrared, visible, and ultraviolet domains. The frontiers of NLO are somewhat blurred, but microwaves and γ-rays are clearly outside its domain. This book is entirely devoted to a study of NLO in a resonant cavity and when the quantum nature of the electromagnetic field is not of prime importance. More precisely, we study those aspects of cavity NLO in which fluctuations in the number of photons and atoms are not relevant. This particular area of optics is dominated by the Maxwell–Bloch equations, which constitute its paradigm in the sense of T. S. Kuhn. The status of the Maxwell–Bloch equations is quite peculiar. From a fundamental viewpoint, they describe the laws of evolution of the first moments of a density operator, which verifies the von Neumann equation. However, to account for the finite lifetime of the atoms and of the field in the necessarily lossy cavity, some legerdemains have to be introduced to obtain the Maxwell–Bloch equations. Stated more explicitly, the von Neumann equation for a large but finite system does not explain irreversibility, whereas the Maxwell–Bloch equations fully include the irreversible decay of the atoms and of the cavity field. This problem is not specifically related to optics but reflects the general failure of statistical mechanics to explain convincingly the irreversible evolution of macroscopic systems.
- Type
- Chapter
- Information
- Theoretical Problems in Cavity Nonlinear Optics , pp. xi - xivPublisher: Cambridge University PressPrint publication year: 1997
- 1
- Cited by