Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:03:59.846Z Has data issue: false hasContentIssue false

Chapter 2 - Organization of Thalamic Inputs

from Section 2: - Anatomy

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Inputs to the thalamus display perplexing heterogeneity in source, transmitter, and the complexity of axon terminals. Almost the entire neuraxis provides excitatory and/or inhibitory terminals to the thalamus. The structure of both glutamatergic and GABAergic inputs varies from simple unisynaptic to highly complex multisynaptic terminals. Variable bouton structures support neurotransmission with different kinetics. In contrast to earlier accounts that proposed the dominance of a single type of input on thalamocortical activity (“relay cell”), in the majority of the thalamus, integration of inputs with different origins, transmitters, and complexities is the rule. Because most thalamic inputs are confined to only a portion of the structure, the emerging picture is that inputs can be integrated in many distinct ways in different thalamic territories. As a consequence, unlike in modular networks, where, however complex the input space is, it is homogeneous across the structure (e.g., the striatum, cerebellum, or cortex), no canonical thalamic module can be defined. The reason for this unique complexity is presently unclear, but the lack of canonical input organization in the thalamus certainly limits the opportunity of generalizing thalamic transfer function between territories. Deciphering the role of the thalamus requires an understanding of the diversity in thalamic input integration in each region.

Type
Chapter
Information
The Thalamus , pp. 27 - 44
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asanuma, C., Thach, W.T., & Jones, E.G. (1983) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. Rev., 5, 267297.CrossRefGoogle Scholar
Barsy, B., Kocsis, K., Magyar, A., Babiczky, Á., Szabó, M., Veres, J.M., Hillier, D., Ulbert, I., Yizhar, O., & Mátyás, F. (2020) Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat. Neurosci., 23, 625637.CrossRefGoogle Scholar
Barthó, P., Freund, T.F., & Acsády, L. (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur. J. Neurosci., 16, 9991014.CrossRefGoogle ScholarPubMed
Barthó, P., Slézia, A., Varga, V., Bokor, H., Pinault, D., Buzsáki, G., & Acsády, L. (2007) Cortical control of zona incerta. J. Neurosci., 27, 16701681.Google Scholar
Bender, D.B. (1981) Retinotopic organization of macaque pulvinar. J. Neurophysiol., 46, 672693.Google Scholar
Bennett, C., Gale, S.D., Garrett, M.E., Newton, M.L., Callaway, E.M., Murphy, G.J., & Olsen, S.R. (2019) Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron, 102, 477–492.e5.Google Scholar
Bickford, M.E. (2019) Synaptic organization of the dorsal lateral geniculate nucleus. Eur. J. Neurosci., 49, 938947.Google Scholar
Bickford, M.E., Zhou, N., Krahe, T.E., Govindaiah, G., & Guido, W. (2015) Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci., 35, 1052310534.CrossRefGoogle ScholarPubMed
Blot, A., Roth, M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S. (2020) Visual intracortical and transthalamic pathways carry distinct information to cortical areas. bioRxiv, 2020.07.06.189902.CrossRefGoogle Scholar
Blot, A., Roth, M.M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S.B. (2021) Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron, 109, 19962008.Google Scholar
Bodor, Á.L., Giber, K., Rovó, Z., Ulbert, I., & Acsády, L. (2008) Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J. Neurosci., 28, 30903102.CrossRefGoogle ScholarPubMed
Bokor, H., Acsády, L., & Deschênes, M. (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J. Neurosci., 28, 51695177.Google Scholar
Bokor, H., Frère, S.G.A., Eyre, M.D., Slézia, A., Ulbert, I., Lüthi, A., & Acsády, L. (2005) Selective GABAergic control of higher-order thalamic relays. Neuron, 45, 929940.CrossRefGoogle ScholarPubMed
Bokor, H., Hádinger, N., & Acsády, L. (2016) Efficient cortical control of basal ganglia recipient motor thalamus. Soc. Neurosci. Abs., 720.18/SS16.Google Scholar
Bourassa, J., & Desche ̂nes, M. (1995) Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253263.Google Scholar
Bourassa, J., Pinault, D., & Deschênes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single‐fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci., 7, 1930.Google Scholar
Bubb, E.J., Kinnavane, L., & Aggleton, J.P. (2017) Hippocampal–diencephalic–cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci. Adv., 1, 239821281772344.Google Scholar
Budisantoso, T., Matsui, K., Kamasawa, N., Fukazawa, Y., & Shigemoto, R. (2012) Mechanisms underlying signal filtering at a multisynapse contact. J. Neurosci., 32, 23572376.CrossRefGoogle Scholar
Castro-Alamancos, M.A. (2002a) Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J. Physiol., 539, 567578.CrossRefGoogle ScholarPubMed
Castro-Alamancos, M.A. (2002b) Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J. Neurophysiol., 87, 946953.Google Scholar
Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A., & Cull-Candy, S.G. (2005) Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat. Neurosci., 8, 13101318.Google Scholar
Chen, X., Aslam, M., Gollisch, T., Allen, K., & Von Engelhardt, J. (2018) CKAMP44 modulates integration of visual inputs in the lateral geniculate nucleus. Nat. Commun., 9, 261.Google Scholar
Clemente-Perez, A., Makinson, S.R., Higashikubo, B., Brovarney, S., Cho, F.S., Urry, A., Holden, S.S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., & Paz, J.T. (2017) Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep., 19, 21302142.CrossRefGoogle ScholarPubMed
Colonnier, M., & Guillery, R.W. (1964) Synaptic organization in the lateral geniculate nucleus of the monkey. Zeitschrift für Zellforsch. und Mikroskopische Anat., 62, 333355.Google Scholar
Constantinople, C.M., & Bruno, R.M. (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron, 69, 10611068.CrossRefGoogle ScholarPubMed
Cooper, H.M., Herbin, M., & Nevo, E. (1993) Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi. J. Comp. Neurol., 328, 313350.Google Scholar
De Zeeuw, C.I., Lisberger, S.G., & Raymond, J.L. (2021) Diversity and dynamism in the cerebellum. Nat. Neurosci., 24, 160167.Google Scholar
Dekker, J.J., & Kuypers, H.G.J.M. (1976) Morphology of rat’s AV thalamic nucleus in light and electron microscopy. Brain Res., 117, 387398.CrossRefGoogle ScholarPubMed
Deschênes, M., Bourassa, J., & Pinault, D. (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res., 664, 215219.Google Scholar
Deschênes, M., Timofeeva, E., & Lavallée, P. (2003) The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J. Neurosci., 23, 67786787.Google Scholar
Deschênes, M., Veinante, P., & Zhang, Z.W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Brain Res. Rev., 28, 286308.Google Scholar
Diamond, M.E., Armstrong‐James, M., Budway, M.J., & Ebner, F.F. (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J. Comp. Neurol., 319, 6684.Google Scholar
Diamond, M.E., Armstrong‐James, M., & Ebner, F.F. (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J. Comp. Neurol., 318, 462476.Google Scholar
Economo, M.N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L.T., Nguyen, T.N., Smith, K.A., Yao, Z., Wang, L., Gerfen, C.R., Chandrashekar, J., Zeng, H., Looger, L.L., & Svoboda, K. (2018) Distinct descending motor cortex pathways and their roles in movement. Nature, 563, 7984.Google Scholar
Erişir, A., Van Horn, S.C., & Sherman, S.M. (1997) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc. Natl. Acad. Sci. U. S. A., 94, 15171520.Google Scholar
Friedlander, M.J., Lin, C.S., Stanford, L.R., & Sherman, S.M. (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J. Neurophysiol., 46, 80129.Google Scholar
Gao, Z., Davis, C., Thomas, A.M., Economo, M.N., Abrego, A.M., Svoboda, K., De Zeeuw, C.I., & Li, N. (2018) A cortico-cerebellar loop for motor planning. Nature, 563, 113116.Google Scholar
Giber, K., Diana, M.A., M Plattner, V., Dugué, G.P., Bokor, H., Rousseau, C. V., Maglóczky, Z., Havas, L., Hangya, B., Wildner, H., Zeilhofer, H.U., Dieudonné, S., & Acsády, L. (2015) A subcortical inhibitory signal for behavioral arrest in the thalamus. Nat. Neurosci., 18, 562568.Google Scholar
Goldberg, J.H., Farries, M.A., & Fee, M.S. (2013) Basal ganglia output to the thalamus: still a paradox. Trends Neurosci., 36, 695705.Google Scholar
Goodridge, J.P. & Taube, J.S. (1997) Interaction between the postsubiculum and anterior thalamus in the generation of head direction cell activity. J. Neurosci., 17, 93159330.Google Scholar
Groh, A., Bokor, H., Mease, R.A., Plattner, V.M., Hangya, B., Stroh, A., Deschênes, M., & Acsády, L. (2014) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb. Cortex, 24, 31673179.CrossRefGoogle ScholarPubMed
Groh, A., de Kock, C.P.J., Wimmer, V.C., Sakmann, B., & Kuner, T. (2008) Driver or coincidence detector: modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. J. Neurosci., 28, 96529663.CrossRefGoogle ScholarPubMed
Guillery, R.W. (1956) Degeneration in the post-commissural fornix and the mamillary peduncle of the ratNo Title. J. Anat., 90, 350370.Google Scholar
Guillery, R.W. & Sherman, S.M. (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron, 33, 163175.Google Scholar
Guillery, R.W. & Sherman, S.M. (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res. Rev., 66, 205219.Google Scholar
Guo, Z. V., Inagaki, H.K., Daie, K., Druckmann, S., Gerfen, C.R., & Svoboda, K. (2017) Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545, 181186.Google Scholar
Hádinger, N., Bősz, E., Tóth, B., Vantomme, G., Lüthi, A., & Acsády, L. (2022) Region selective cortical control of the thalamic reticular nucleus. BioRxiv, 2022.01.17.476335. https://doi.org/10.1101/2022.01.17.476335CrossRefGoogle Scholar
Halassa, M.M., & Acsády, L. (2016) Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci., 39, 680693.CrossRefGoogle Scholar
Halassa, M.M., & Kastner, S. (2017) Thalamic functions in distributed cognitive control. Nat. Neurosci., 20, 16691679.Google Scholar
Hamos, J.E., VanHorn, S.C., Raczkowski, D., & Sherman, S.M. (1987) Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol., 259, 165192.CrossRefGoogle Scholar
Harding, B.N., & Powell, T.P. (1977) An electron microscopic study of the centre-median and ventrolateral nuclei of the thalamus in the monkey. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 279, 357412.Google Scholar
Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P., Caldejon, S., Casal, L., Cho, A., Feiner, A., Feng, D., Gaudreault, N., Gerfen, C.R., Graddis, N., Groblewski, P.A., Henry, A.M., Ho, A., Howard, R., Knox, J.E., Kuan, L., Kuang, X., Lecoq, J., Lesnar, P., Li, Y., Luviano, J., McConoughey, S., Mortrud, M.T., Naeemi, M., Ng, L., Oh, S.W., Ouellette, B., Shen, E., Sorensen, S.A., Wakeman, W., Wang, Q., Wang, Y., Williford, A., Phillips, J.W., Jones, A.R., Koch, C., & Zeng, H. (2019) Hierarchical organization of cortical and thalamic connectivity. Nature, 575, 195202.Google Scholar
Hirsch, J.A. (2003) Synaptic physiology and receptive field structure in the early visual pathway of the cat. In Cerebral Cortex. Oxford University Press, pp. 6369.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P.O., Clascá, F., Kim, Y., & Molnár, Z. (2018) Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb. Cortex, 28, 18821897.Google Scholar
Hoogland, P. V, Wouterlood, F.G., Welker, E., & Van der Loos, H. (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp. Brain Res., 87, 159172.Google Scholar
Ilinsky, I.A., Jouandet, M.L., & Goldman-Rakic, P.S. (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J. Comp. Neurol., 236, 315330.Google Scholar
Ilinsky, I.A., Yi, H., & Kultas-Ilinsky, K. (1997) Mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J. Comp. Neurol., 386, 601612.Google Scholar
Ito, H.T., Moser, E.I., & Moser, M.B. (2018) Supramammillary nucleus modulates spike-time coordination in the prefrontal-thalamo-hippocampal circuit during navigation. Neuron, 99, 576–587.e5.CrossRefGoogle ScholarPubMed
Ito, H.T., Zhang, S.J., Witter, M.P., Moser, E.I., & Moser, M.B. (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature, 522, 5055.Google Scholar
Jacobson, S., & Trojanowski, J.Q. (1975) Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res., 85, 385401.CrossRefGoogle Scholar
Jones, E.G. (2007a) Descriptions of thalamus in representative mammals. In The Thalamus, 2nd ed. Cambridge University Press, pp. 4387.Google Scholar
Jones, E.G. (2007b) Principles of thalamic organization. In The Thalamus, 2nd ed. Cambridge University Press, pp. 87171.Google Scholar
Jones, E.G. (2007c) Thalamic neurons, synaptic organization, and functional properties. In The Thalamus, 2nd ed. Cambridge University Press, pp. 171318.Google Scholar
Jones, E.G., & Rockel, A.J. (1971) The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Zeitschrift für Zellforsch. und Mikroskopische Anat., 113, 4466.Google Scholar
Kakei, S., Na, J., & Shinoda, Y. (2001) Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J. Comp. Neurol., 437, 170185.Google Scholar
Kenigfest, N.B., Repérant, J., Rio, J. ‐P, Belekhova, M.G., Tumanova, N.L., Ward, R., Vesselkin, N.P., Herbin, M., Chkeidze, D.D., & Ozirskaya, E. V. (1995) Fine structure of the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: A Golgi, combined hrp tracing and GABA immunocytochemical study. J. Comp. Neurol., 356, 595614.Google Scholar
Kirouac, G.J. (2015) Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci. Biobehav. Rev., 56, 315329.Google Scholar
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T., & Miyamoto, A. (2013) Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci., 16, 749755.Google Scholar
Krettek, J.E. & Price, J.L. (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol., 172, 687722.CrossRefGoogle Scholar
Kuroda, M., & Price, J.L. (1991) Synaptic organization of projections from basal forebrain structures to the mediodorsal thalamic nucleus of the rat. J. Comp. Neurol., 303, 513533.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J. Neurosci., 25, 74897498.Google Scholar
Li, Y., Lopez-Huerta, V.G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S.K., Arias-Garcia, M.A., Guo, B., Yao, A.Y., Blosser, T.R., Wimmer, R.D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C.C., Shema, R., Gomes, M., Li, T., Hwang, E., Krol, A., Kowalczyk, M., Peça, J., Pan, G., Halassa, M.M., Levin, J.Z., Fu, Z., & Feng, G. (2020) Distinct subnetworks of the thalamic reticular nucleus. Nature, 583, 819824.Google Scholar
Liu, X.B., Honda, C.N., & Jones, E.G. (1995) Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J. Comp. Neurol., 352, 6991.Google Scholar
Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A., Danielson, N., Zaremba, J.D., Reardon, T.R., Turi, G.F., Hen, R., Zemelman, B. V., & Losonczy, A. (2014) Dendritic inhibition in the hippocampus supports fear learning. Science, 343, 857863.Google Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., & Fuchs, A.F. (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol., 164, 287303.Google Scholar
Maendly, R., Ruegg, D.G., Wiesendanger, M., Lagowska, J., & Hess, B. (1981) Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J. Neurophysiol., 46, 901917.Google Scholar
Maglóczky, Z., Acsády, L., & Freund, T.F. (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 4, 322334.Google Scholar
Martinez-Garcia, R.I., Voelcker, B., Zaltsman, J.B., Patrick, S.L., Stevens, T.R., Connors, B.W., & Cruikshank, S.J. (2020) Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature, 583, 813818.Google Scholar
Mason, A., Ilinsky, I.A., Beck, S., & Kultas-Ilinsky, K. (1996) Reevaluation of synaptic relationships of cerebellar terminals in the ventral lateral nucleus of the rhesus monkey thalamus based on serial section analysis and three-dimensional reconstruction. Exp. Brain Res., 109, 219239.Google Scholar
Mátyás, F., Komlósi, G., Babiczky, Á., Kocsis, K., Barthó, P., Barsy, B., Dávid, C., Kanti, V., Porrero, C., Magyar, A., Szűcs, I., Clascá, F., & Acsády, L. (2018) A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat. Neurosci., 21, 15511562.Google Scholar
Mátyás, F., Lee, J., Shin, H.-S., & Acsády, L. (2014) The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur. J. Neurosci., 39, 18101823.Google Scholar
Mátyás, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C.C.H. (2010) Motor control by sensory cortex. Science, 330, 12401243.Google Scholar
Mikula, S., Manger, P.R., & Jones, E.G. (2008) The thalamus of the monotremes: Cyto- and myeloarchitecture and chemical neuroanatomy. Philos. Trans. R. Soc. B Biol. Sci., 363, 24152440.Google Scholar
Moore, B., Li, K., Kaas, J.H., Liao, C.C., Boal, A.M., Mavity-Hudson, J., & Casagrande, V. (2019) Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J. Comp. Neurol., 527, 577588.Google Scholar
Moore, R.Y., Weis, R., & Moga, M.M. (2000) Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat. J. Comp. Neurol., 420, 398418.Google Scholar
Morgan, J.L., Berger, D.R., Wetzel, A.W., & Lichtman, J.W. (2016) The Fuzzy logic of network connectivity in mouse visual thalamus. Cell, 165, 192206.Google Scholar
Negyessy, L., Hamori, J., & Bentivoglio, M. (1998) Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience, 84, 741753.Google Scholar
Ojima, H. (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb. Cortex, 4, 646663.Google Scholar
Otis, J.M., Zhu, M.H., Namboodiri, V.M.K., Cook, C.A., Kosyk, O., Matan, A.M., Ying, R., Hashikawa, Y., Hashikawa, K., Trujillo-Pisanty, I., Guo, J., Ung, R.L., Rodriguez-Romaguera, J., Anton, E.S., & Stuber, G.D. (2019) Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron, 103, 423–431.e4.Google Scholar
Pare, D., Dossi, R.C., & Steriade, M. (1991) Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat. J. Neurophysiol., 66, 11901204.Google Scholar
Pelzer, P., Horstmann, H., & Kuner, T. (2017) Ultrastructural and functional properties of a giant synapse driving the piriform cortex to mediodorsal thalamus projection. Front. Synaptic Neurosci., 9, 3.Google Scholar
Penzo, M.A., & Gao, C. (2021) The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci., 44, 538549.Google Scholar
Percheron, G., Franqois, C., Talbi, B., Yelnik, J., & Ffnelon, G. (1996) The primate motor thalamus. Brain, 22, 93181.Google Scholar
Peyrache, A., Lacroix, M.M., Petersen, P.C., & Buzsáki, G. (2015) Internally organized mechanisms of the head direction sense. Nat. Neurosci., 18, 569575.Google Scholar
Pinault, D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res. Brain Res. Rev., 46, 131.CrossRefGoogle ScholarPubMed
Pinault, D., & Deschênes, M. (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol., 391, 180203.Google Scholar
Purushothaman, G., Marion, R., Li, K., & Casagrande, V.A. (2012) Gating and control of primary visual cortex by pulvinar. Nat. Neurosci., 15, 905912.Google Scholar
Ralston, H.J. (1969) The synaptic organization of lemniscal projections to the ventrobasal thalamus of the cat. Brain Res., 14, 99115.CrossRefGoogle Scholar
Reichova, I., & Sherman, S.M. (2004) Somatosensory corticothalamic projections: distinguishing drivers from modulators. J. Neurophysiol., 92, 21852197.Google Scholar
Rikhye, R. V., Wimmer, R.D., & Halassa, M.M. (2018) Toward an integrative theory of thalamic function. Annu. Rev. Neurosci., 41, 163183.Google Scholar
Rinvik, E., & Grofová, I. (1974a) Cerebellar projections to the nuclei ventralis lateralis and ventralis anterior thalami – Experimental electron microscopical and light microscopical studies in the cat. Anat. Embryol. (Berl)., 146, 95111.Google Scholar
Rinvik, E., & Grofová, I. (1974b) Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat. Embryol. (Berl)., 146, 5793.Google Scholar
Rollenhagen, A., & Lübke, J.H.R. (2006) The morphology of excitatory central synapses: From structure to function. Cell Tissue Res., 326, 221237.Google Scholar
Rompani, S.B., Müllner, F.E., Wanner, A., Zhang, C., Roth, C.N., Yonehara, K., & Roska, B. (2017) Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron, 93, 767–776.e6.Google Scholar
Rouiller, E.M., & Welker, E. (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res. Bull., 53, 727741.Google Scholar
Rovó, Z., Ulbert, I., & Acsády, L. (2012) Drivers of the primate thalamus. J. Neurosci., 32, 1789417908.Google Scholar
Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M.M. (2017) Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545, 219223.Google Scholar
Schwartz, M.L., Dekker, J.J., & Goldman‐Rakic, P.S. (1991) Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey. J. Comp. Neurol., 309, 289304.Google Scholar
Sherman, S.M., & Guillery, R.W. (1996) Functional organization of thalamocortical relays. J. Neurophysiol., 76, 13671395.Google Scholar
Sherman, S.M., & Guillery, R.W. (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proc. Natl. Acad. Sci. USA, 95, 71217126.Google Scholar
Sherman, S.M., & Guillery, R.W. (2005) The afferent axons to the thalamus: their structure and connections. In Exploring the Thalamus and Its Role in Cortical Functions. MIT Press, pp. 77137.Google Scholar
Sirota, M.G., Swadlow, H.A., & Beloozerova, I.N. (2005) Three channels of corticothalamic communication during locomotion. J. Neurosci., 25, 59155925.Google Scholar
Steriade, M., & Glenn, L.L. (1982) Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J. Neurophysiol., 48, 352371.CrossRefGoogle ScholarPubMed
Steriade, M., Jones, E.G., & McCormick, D.A. (1997a) Diffuse regulatory system of the thalamus. In Thalamus. Elsevier, pp. 269339.Google Scholar
Steriade, M., Jones, E.G., & McCormick, D.A. (1997b) The relay function of the thalamus during brain activation. In Thalamus. Elsevier, pp. 393533.Google Scholar
Sumser, A., Mease, R.A., Sakmann, B., & Groh, A. (2017) Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex. Proc. Natl. Acad. Sci. USA, 114, 88538858.Google Scholar
Suryanarayana, S.M., Pérez-Fernández, J., Robertson, B., & Grillner, S. (2020) The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol., 4, 639651.Google Scholar
Suryanarayana, S.M., Robertson, B., Wallén, P., & Grillner, S. (2017) The lamprey Pallium provides a blueprint of the mammalian layered cortex. Curr. Biol., 27, 3264–3277.e5.Google Scholar
Szentágothai, J., Hámori, J., & Tömböl, T. (1966) Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res., 2, 283301.Google Scholar
Telgkamp, P., Padgett, D.E., Ledoux, V.A., Woolley, C.S., & Raman, I.M. (2004) Maintenance of high-frequency transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron, 41, 113126.Google Scholar
Turner, J.P., & Salt, T.E. (1998) Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J. Physiol., 510, 829843.Google Scholar
Urbain, N., & Deschênes, M. (2007a) A new thalamic pathway of vibrissal information modulated by the motor cortex. J. Neurosci., 27, 1240712412.Google Scholar
Urbain, N., & Deschênes, M. (2007b) Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron, 56, 714725.Google Scholar
Usrey, W.M., Reppas, J.B., & Reid, R.C. (1999) Specificity and strength of retinogeniculate connections. J. Neurophysiol., 82, 35273540.Google Scholar
Van der Werf, Y.D., Witter, M.P., & Groenewegen, H.J. (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 39, 107140.Google Scholar
Varga, V., Losonczy, A., Zemelman, B. V, Borhegyi, Z., Nyiri, G., Domonkos, A., Hangya, B., Holderith, N., Magee, J.C., & Freund, T.F. (2009) Fast synaptic subcortical control of hippocampal circuits. Science, 326, 449453.Google Scholar
Veinante, P., & Deschênes, M. (2003) Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol., 464, 98103.Google Scholar
Vicq d’Azyr, F. (1786) Traite d’Anatomie et de Physiologie. Didot.Google Scholar
Vidnyánszky, Z., Gorcs, T., Negyessy, L., Borostyankoi, Z., Knopfel, T., & Hamori, J. (1996) Immunocytochemical visualization of the mGluR1a metabotropic glutamate receptor at synapses of corticothalamic terminals originating from area 17 of the rat. Eur. J. Neurosci., 8, 10611071.Google Scholar
Vizi, E.S., & Lábos, E. (1991) Non-synaptic interactions at presynaptic level. Prog. Neurobiol., 37, 145163.Google Scholar
Wanaverbecq, N., Bodor, Á.L., Bokor, H., Slézia, A., Lüthi, A., & Acsády, L. (2008) Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus. J. Neurosci., 28, 1184811861.Google Scholar
Xu, W., & Südhof, T.C. (2013) A neural circuit for memory specificity and generalization. Science, 339, 12901295.Google Scholar
Yamawaki, N., & Shepherd, G.M.G. (2015) Synaptic circuit organization of motor corticothalamic neurons. J. Neurosci., 35, 22932307.Google Scholar
Yu, C., Derdikman, D., Haidarliu, S., & Ahissar, E. (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol., 4,e124.Google Scholar
Zhou, H., Schafer, R.J., & Desimone, R. (2016) Pulvinar-cortex interactions in vision and attention. Neuron, 89, 209220.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×