Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T19:10:09.487Z Has data issue: false hasContentIssue false

Chapter 4 - Social Media Assessments around the Globe

from Part II - Global Perspectives on Key Methods/Topics

Published online by Cambridge University Press:  08 November 2023

Louis Tay
Affiliation:
Purdue University, Indiana
Sang Eun Woo
Affiliation:
Purdue University, Indiana
Tara Behrend
Affiliation:
Purdue University, Indiana
Get access

Summary

Social media is an ever-increasing aspect of the internet presence and daily life. Despite certain challenges in defining the construct, researchers have realized the possibility that social media can allow for the measurement and assessment of a wide variety of variables. Throughout the ever-growing number of social media sites and apps across countries and languages, there is an abundance of formats that researchers can utilize, such as photo, text, location, video, and more. In this book chapter, we conducted a literature search and identified four constructs that are most frequently studied using social media (i.e., personality, emotion/affect/mood, life satisfaction, and political views). We then summarized a list of studies that use social media to investigate these four constructs. Additionally, social media offers unique opportunities for researchers to assess various cross-cultural data, which can present its own challenges. We also provide examples of the potential opportunities and challenges, as well as ethical and technical considerations for researchers to keep in mind.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A., Singh, R., & Toshniwal, D. (2018). Geospatial sentiment analysis using Twitter data for UK-EU referendum. Journal of Information and Optimization Sciences, 39(1), 303317. https://doi.org/10.1080/02522667.2017.1374735CrossRefGoogle Scholar
Alpaydin, E. (2020). Introduction to machine learning. MIT Press.Google Scholar
An, X., Ganguly, A., Fang, Y., Scyphers, S. B., Hunter, A. M., & Dy, J. G. (2014). Tracking climate change opinions from Twitter data (Workshop on Data Science for Social Good, pp. 16).Google Scholar
Arnoux, P.-H., Xu, A., Boyette, N., Mahmud, J., Akkiraju, R., & Sinha, V. (2017). 25 tweets to know you: A new model to predict personality with social media. Proceedings of the International AAAI Conference on Web and Social Media, 11, 472475.CrossRefGoogle Scholar
Ashton, M. C., & Lee, K. (2007). Empirical, theoretical, and practical advantages of the HEXACO model of personality structure. Personality and Social Psychology Review, 11(2), 150166. https://doi.org/10.1177/1088868306294907CrossRefGoogle ScholarPubMed
Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P., & Stillwell, D. (2012). Personality and patterns of Facebook usage. Proceedings of the 4th Annual ACM Web Science Conference, 24–32.CrossRefGoogle Scholar
Batson, C. D., Shaw, L. L., & Oleson, K. C. (1992). Differentiating affect, mood, and emotion: Toward functionally based conceptual distinctions. In Clark, M. S. (Ed.), Emotion (pp. 294326). Sage Publications, Inc.Google Scholar
Bond, C. S., Ahmed, O. H., Hind, M., Thomas, B., & Hewitt-Taylor, J. (2013). The conceptual and practical ethical dilemmas of using health discussion board posts as research data. Journal of Medical Internet Research, 15(6), e112. https://doi.org/10.2196/jmir.2435CrossRefGoogle ScholarPubMed
Cameron, M. P., Barrett, P., & Stewardson, B. (2016). Can social media predict election results? Evidence from New Zealand. Journal of Political Marketing, 15(4), 416432. https://doi.org/10.1080/15377857.2014.959690CrossRefGoogle Scholar
Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, developing, and divining. Atlantic Journal of Communication, 23(1), 4665. https://doi.org/10.1080/15456870.2015.972282CrossRefGoogle Scholar
Celli, F., Bruni, E., & Lepri, B. (2014). Automatic personality and interaction style recognition from Facebook profile pictures. Proceedings of the 22nd ACM International Conference on Multimedia, 1101–1104. https://doi.org/10.1145/2647868.2654977CrossRefGoogle Scholar
Ceron, A., Curini, L., Iacus, S. M., & Porro, G. (2014). Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media & Society, 16(2), 340358. https://doi.org/10.1177/1461444813480466CrossRefGoogle Scholar
Chang, K.-C., Chiang, C.-F., & Lin, M.-J. (2021). Using Facebook data to predict the 2016 U.S. presidential election. PLoS ONE, 16(12), e0253560. https://doi.org/10.1371/journal.pone.0253560CrossRefGoogle ScholarPubMed
Chen, L., & Tsoi, H. K. (2011). Privacy concern and trust in using social network sites: A comparison between French and Chinese users. In Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., & Winckler, M. (Eds.), Human-computer interaction – INTERACT 2011 (Vol. 6948, pp. 234241). Springer. https://doi.org/10.1007/978-3-642-23765-2_16CrossRefGoogle Scholar
Chen, S. L., Hall, G. J., & Johns, M. D. (2004). Research paparazzi in cyberspace: The voices of the researched. In Johns, M. D., Chen, S. L., & Hall, G. J. (Eds.), Online social research: Methods, issues, and ethics (pp. 157175). Peter Lang.Google Scholar
Collins, S., Sun, Y., Kosinski, M., Stillwell, D., & Markuzon, N. (2015). Are you satisfied with life?: Predicting satisfaction with life from Facebook. In Agarwal, N., Xu, K., & Osgood, N. (Eds.), Social computing, behavioral-cultural modeling, and prediction (Vol. 9021, pp. 2433). Springer International Publishing. https://doi.org/10.1007/978-3-319-16268-3_3CrossRefGoogle Scholar
Conway, M., & O’Connor, D. (2016). Social media, big data, and mental health: Current advances and ethical implications. Current Opinion in Psychology, 9, 7782. https://doi.org/10.1016/j.copsyc.2016.01.004CrossRefGoogle ScholarPubMed
De Choudhury, M., & Counts, S. (2013). Understanding affect in the workplace via social media. Proceedings of the 2013 Conference on Computer Supported Cooperative Work – CSCW’13, 303. https://doi.org/10.1145/2441776.2441812CrossRefGoogle Scholar
De Choudhury, M., Counts, S., & Horvitz, E. (2013). Social media as a measurement tool of depression in populations. Proceedings of the 5th Annual ACM Web Science Conference – WebSci’13, 47–56. https://doi.org/10.1145/2464464.2464480CrossRefGoogle Scholar
Dean, B. (2022, January 5). How many people use Twitter in 2022? BacklinkO. https://backlinko.com/twitter-usersGoogle Scholar
Ekkekakis, P. (2012). Affect, mood, and emotion. In Tenenbaum, G., Eklund, R. C., & Kamata, A. (Eds.), Measurement in sport and exercise psychology (pp. 321332). Human Kinetics. https://doi.org/10.5040/9781492596332.ch-028CrossRefGoogle Scholar
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3–4), 169200. https://doi.org/10.1080/02699939208411068CrossRefGoogle Scholar
Fischer, A. H., Rodriguez Mosquera, P. M., van Vianen, A. E. M., & Manstead, A. S. R. (2004). Gender and culture differences in emotion. Emotion, 4(1), 8794. https://doi.org/10.1037/1528-3542.4.1.87CrossRefGoogle ScholarPubMed
Gao, Q., Abel, F., Houben, G.-J., & Yu, Y. (2012). A comparative study of users’ microblogging behavior on Sina Weibo and Twitter. In Masthoff, J., Mobasher, B., Desmarais, M. C., & Nkambou, R. (Eds.), User modeling, adaptation, and personalization (Vol. 7379, pp. 88101). Springer. https://doi.org/10.1007/978-3-642-31454-4_8CrossRefGoogle Scholar
Gao, R., Hao, B., Bai, S., Li, L., Li, A., & Zhu, T. (2013). Improving user profile with personality traits predicted from social media content. Proceedings of the 7th ACM Conference on Recommender Systems, 355–358. https://doi.org/10.1145/2507157.2507219CrossRefGoogle Scholar
Golbeck, J., Robles, C., Edmondson, M., & Turner, K. (2011). Predicting personality from Twitter. 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l Conference on Social Computing, 149–156. https://doi.org/10.1109/PASSAT/SocialCom.2011.33CrossRefGoogle Scholar
Golder, S., Ahmed, S., Norman, G., & Booth, A. (2017). Attitudes toward the ethics of research using social media: A systematic review. Journal of Medical Internet Research, 19(6), e195. https://doi.org/10.2196/jmir.7082CrossRefGoogle ScholarPubMed
Gosling, S. D., Augustine, A. A., Vazire, S., Holtzman, N., & Gaddis, S. (2011). Manifestations of personality in online social networks: Self-reported Facebook-related behaviors and observable profile information. Cyberpsychology, Behavior, and Social Networking, 14(9), 483488. https://doi.org/10.1089/cyber.2010.0087CrossRefGoogle ScholarPubMed
Guo, F., Gallagher, C. M., Sun, T., Tavoosi, S., & Min, H. (2021). Smarter people analytics with organizational text data: Demonstrations using classic and advanced NLP models. Human Resource Management Journal, 1–16. https://doi.org/10.1111/1748-8583.12426CrossRefGoogle Scholar
Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text preprocessing for text mining in organizational research: Review and recommendations. Organizational Research Methods, 25(1), 114146. https://doi.org/10.1177/1094428120971683CrossRefGoogle Scholar
Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American Journal of Political Science, 54(1), 229247. https://doi.org/10.1111/j.1540-5907.2009.00428.xCrossRefGoogle Scholar
Howard, P. N., & Parks, M. R. (2012). Social media and political change: Capacity, constraint, and consequence. Journal of Communication, 62(2), 359362.CrossRefGoogle Scholar
Iqbal, M. (2022, January 11). Twitter revenue and usage statistics (2022). Business of Apps. https://www.businessofapps.com/data/twitter-statistics/Google Scholar
Kent, M. L. (2010). Directions in social media for professionals and scholars. In Heath, R. L. (Ed.), The SAGE handbook of public relations (pp. 643656). SAGE.Google Scholar
Khan, Md. S. S., Rafa, S. R., Abir, A. E. H., & Das, A. K. (2021). Sentiment analysis on Bengali Facebook comments to predict fan’s emotions towards a celebrity. Journal of Engineering Advancements, 2(3), 118124. https://doi.org/10.38032/jea.2021.03.001CrossRefGoogle Scholar
Kim, S. M., Valitutti, A., & Calvo, R. A. (2010). Evaluation of unsupervised emotion models to textual affect recognition. Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, 62–70.Google Scholar
Kirelli, Y., & Arslankaya, S. (2020). Sentiment analysis of shared tweets on global warming on Twitter with data mining methods: A case study on Turkish language. Computational Intelligence and Neuroscience, 2020, 19. https://doi.org/10.1155/2020/1904172CrossRefGoogle ScholarPubMed
Kleanthous, S., Herodotou, C., Samaras, G., & Germanakos, P. (2016). Detecting personality traces in users’ social activity. In Meiselwitz, G. (Ed.), Social computing and social media (pp. 287297). Springer International Publishing.CrossRefGoogle Scholar
Kosicki, G. (2020). Survey methods, traditional, and public opinion polling. In Bulck, J. V. d. (Ed.), The international encyclopedia of media psychology (pp. 15). John Wiley & Sons, Inc. https://doi.org/10.1002/978111901107.iemp.0045Google Scholar
Kosinski, M., Bachrach, Y., Kohli, P., Stillwell, D., & Graepel, T. (2014). Manifestations of user personality in website choice and behaviour on online social networks. Machine Learning, 95(3), 357380. https://doi.org/10.1007/s10994–013-5415-yCrossRefGoogle Scholar
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543556. https://doi.org/10.1037/a0039210CrossRefGoogle ScholarPubMed
Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 58025805. https://doi.org/10.1073/pnas.1218772110CrossRefGoogle ScholarPubMed
Krum, R. (2010). 2010 Facebook vs. Twitter social demographics. Cool Infographics. https://coolinfographics.com/blog/2011/2/10/2010-facebook-vs-twitter-social-demographics.htmlGoogle Scholar
Li, M., Hickman, L., Tay, L., Ungar, L., & Guntuku, S. C. (2020). Studying politeness across cultures using English Twitter and Mandarin Weibo. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 115. https://doi.org/10.48550/arXiv.2008.02449Google Scholar
Liu, L., Preotiuc-Pietro, D., Samani, Z. R., Moghaddam, M. E., & Ungar, L. (2016, March). Analyzing personality through social media profile picture choice. Tenth International AAAI Conference on Web and Social Media.Google Scholar
Makazhanov, A., Rafiei, D., & Waqar, M. (2014). Predicting political preference of Twitter users. Social Network Analysis and Mining, 4(1), 193. https://doi.org/10.1007/s13278–014-0193-5CrossRefGoogle Scholar
Mandl, T. (2009). Comparing Chinese and German blogs. Proceedings of the 20th ACM Conference on Hypertext and Hypermedia – HT’09, 299. https://doi.org/10.1145/1557914.1557964CrossRefGoogle Scholar
McKee, R. (2013). Ethical issues in using social media for health and health care research. Health Policy, 110(2), 298301. https://doi.org/10.1016/j.healthpol.2013.02.006CrossRefGoogle ScholarPubMed
Michaelidou, N., Moraes, C., & Micevski, M. (2016). A scale for measuring consumers? Ethical perceptions of social media research. In Petit, O., Merunka, D., & Oullier, O. (Eds.), Let’s get engaged! Crossing the threshold of marketing’s engagement era (pp. 97100). Springer.CrossRefGoogle Scholar
Mikal, J., Hurst, S., & Conway, M. (2016). Ethical issues in using Twitter for population-level depression monitoring: A qualitative study. BMC Medical Ethics, 17(1), Article 22. https://doi.org/10.1186/s12910–016-0105-5CrossRefGoogle ScholarPubMed
Min, H., Peng, Y., Shoss, M., & Yang, B. (2021). Using machine learning to investigate the public’s emotional responses to work from home during the COVID-19 pandemic. Journal of Applied Psychology, 106(2), 214229. https://doi.org/10.1037/apl0000886CrossRefGoogle ScholarPubMed
Mittal, A., & Goel, A. (2012). Stock prediction using Twitter sentiment analysis. Stanford University.Google Scholar
Monti, C., Zignani, M., Rozza, A., Arvidsson, A., Zappella, G., & Colleoni, E. (2013). Modelling political disaffection from Twitter data. Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining – WISDOM’13, 1–9. https://doi.org/10.1145/2502069.2502072CrossRefGoogle Scholar
Moreno, M. A., Goniu, N., Moreno, P. S., & Diekema, D. (2013). Ethics of social media research: Common concerns and practical considerations. Cyberpsychology, Behavior, and Social Networking, 16(9), 708713. https://doi.org/10.1089/cyber.2012.0334CrossRefGoogle ScholarPubMed
Norman, J. (2018, May 4). Young Americans still wary of investing in stocks. Gallup. https://news.gallup.com/poll/233699/young-americans-wary-investing-stocks.aspxGoogle Scholar
Park, G., Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Kosinski, M., Stillwell, D. J., Ungar, L. H., & Seligman, M. E. P. (2015). Automatic personality assessment through social media language. Journal of Personality and Social Psychology, 108(6), 934952. https://doi.org/10.1037/pspp0000020CrossRefGoogle ScholarPubMed
Pervin, L. A., Cervone, D., & John, O. P. (2005). Theories of personality. In Pervin, L. A. , Cervone, D., & John, O. P. (Ed.), Personality: Theory and research (pp. 365386). Wiley.Google Scholar
Putka, D. J., Beatty, A. S., & Reeder, M. C. (2018). Modern prediction methods: New perspectives on a common problem. Organizational Research Methods, 21(3), 689732.CrossRefGoogle Scholar
Qiu, L., Lin, H., Ramsay, J., & Yang, F. (2012). You are what you tweet: Personality expression and perception on Twitter. Journal of Research in Personality, 46(6), 710718. https://doi.org/10.1016/j.jrp.2012.08.008CrossRefGoogle Scholar
Quercia, D., Kosinski, M., Stillwell, D. J., & Crowcroft, J. (2011). Our Twitter profiles, our selves: Predicting personality with twitter. 2011 IEEE Third International Conference on Social Computing, 180–185.CrossRefGoogle Scholar
Rhee, L., Bayer, J. B., Lee, D. S., & Kuru, O. (2021). Social by definition: How users define social platforms and why it matters. Telematics and Informatics, 59, 101538. https://doi.org/10.1016/j.tele.2020.101538CrossRefGoogle Scholar
Roccas, S., Sagiv, L., Schwartz, S. H., & Knafo, A. (2002). The big five personality factors and personal values. Personality and Social Psychology Bulletin, 28(6), 789801. https://doi.org/10.1177/0146167202289008CrossRefGoogle Scholar
Romero, D. M., Meeder, B., & Kleinberg, J. (2011). Differences in the mechanics of information diffusion across topics: Idioms, political hashtags, and complex contagion on twitter. Proceedings of the 20th International Conference on World Wide Web, 695–704.CrossRefGoogle Scholar
Russell, J. A. (1991). Culture and the categorization of emotions. Psychological Bulletin, 110(3), 426450.CrossRefGoogle ScholarPubMed
Salmons, J., & Woodfield, K. (2013). Social media, social science & research ethics. Social Media in Social Research Conference: Ethics of Social Media Research, 1–24.Google Scholar
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M., … & Ungar, L. H. (2013). Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS ONE, 8(9), e73791. https://doi.org/10.1371/journal.pone.0073791CrossRefGoogle ScholarPubMed
Seder, J. P., & Oishi, S. (2012). Intensity of smiling in Facebook photos predicts future life satisfaction. Social Psychological and Personality Science, 3(4), 407413. https://doi.org/10.1177/1948550611424968CrossRefGoogle Scholar
Smith, M., Szongott, C., Henne, B., & von Voigt, G. (2012). Big data privacy issues in public social media. 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST), 1–6. https://doi.org/10.1109/DEST.2012.6227909CrossRefGoogle Scholar
Thilakaratne, M., Weerasinghe, R., & Perera, S. (2016, October). Knowledge-driven approach to predict personality traits by leveraging social media data. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI) (pp. 288295). IEEE.CrossRefGoogle Scholar
Townsend, L., & Wallace, C. (2016). Social media research: A guide to ethics. University of Aberdeen.Google Scholar
Twitter Development. (n.d.). Counting characters when composing tweets. Twitter Developer Platform. https://developer.twitter.com/en/docs/counting-charactersGoogle Scholar
Vitalis, I. (2019, October 25). US demographics and the stock market. Tradimo News. https://news.tradimo.com/us-demographics-and-the-stock-market/Google Scholar
Wang, Y., & Pal, A. (2015, June). Detecting emotions in social media: A constrained optimization approach. Twenty-Fourth International Joint Conference on Artificial Intelligence.Google Scholar
Williams, M. (2015). Towards an ethical framework for using social media data in social research. Social Data Lab. http://socialdatalab.net/wp-content/uploads/2016/08/EthicsSM-SRA-Workshop.pdfGoogle Scholar
Zheng, W., Yuan, C.-H., Chang, W.-H., & Wu, Y.-C. J. (2016). Profile pictures on social media: Gender and regional differences. Computers in Human Behavior, 63, 891898. https://doi.org/10.1016/j.chb.2016.06.041CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×