Published online by Cambridge University Press: 05 July 2015
Rapid advances in genetics, genomics and imaging have given insight into the molecular and cellular basis of behaviour in a variety of model organisms with unprecedented detail and scope. It is increasingly becoming routine to isolate behavioural mutants, clone and characterise mutant genes and discern the molecular and neural basis for a behavioural phenotype. Conversely, reverse genetic approaches have made it possible to straightforwardly identify genes of interest in whole-genome sequences and generate mutants that can be subjected to phenotypic analysis. In this latter approach, it is the phenol typing that presents the major bottleneck; when it comes to connecting phenotype to genotype in freely behaving animals, analysis of behaviour itself remains superficial and time-consuming. However, many proof-of-principle studies of automated behavioural analysis over the last decade have poised the field on the verge of exciting developments that promise to begin closing this gap.
In the broadest sense, our goal in this chapter is to explore what we can learn about the genes involved in neural function by carefully observing behaviour. This approach is rooted in model organism genetics but shares ideas with ethology and neuroscience, as well as computer vision and bioinformatics. After introducing Caenorhabditis elegans as a model, we will survey the research that has led to the current state of the art in worm behavioural phenol typing and present current research that is transforming our approach to behavioural genetics.
The worm as a model organism
Caenorhabditis elegans is a nematode worm that lives in bacteria-rich environments such as rotting fruit and has also been isolated from insects and snails which it is thought to use for longer-range transportation (Barriere & Felix 2005, Lee et al. 2011). In the laboratory, it is commonly cultured on the surface of agar plates seeded with a lawn of the bacterium Escherichia coli as a food source. On plates, worms lie on either their left or right side and crawl by propagating a sinuous dorso-ventral wave from head to tail.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.