Book contents
- Frontmatter
- Contents
- Introduction
- A variational interpretation of Melnikov's function and exponentially small separatrix splitting
- Global Darboux theorems and a linearization problem
- Complex cobordism, Ashtekar's equations and diffeomorphisms
- Instanton homology and symplectic fixed points
- An energy–capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity
- Caustics Dk at points of interface between two media
- Examples of singular reduction
- Remarks on the uniqueness of symplectic blowing up
- The 4-dimensional symplectic camel and related results
- Differential forms and connections adapted to a contact structure, after M. Rumin
- The Maslov class rigidity and non-existence of Lagrangian embeddings
- Phase functions and path integrals
- Symplectic mappings which are stable at infinity
Instanton homology and symplectic fixed points
Published online by Cambridge University Press: 16 October 2009
- Frontmatter
- Contents
- Introduction
- A variational interpretation of Melnikov's function and exponentially small separatrix splitting
- Global Darboux theorems and a linearization problem
- Complex cobordism, Ashtekar's equations and diffeomorphisms
- Instanton homology and symplectic fixed points
- An energy–capacity inequality for the symplectic holonomy of hypersurfaces flat at infinity
- Caustics Dk at points of interface between two media
- Examples of singular reduction
- Remarks on the uniqueness of symplectic blowing up
- The 4-dimensional symplectic camel and related results
- Differential forms and connections adapted to a contact structure, after M. Rumin
- The Maslov class rigidity and non-existence of Lagrangian embeddings
- Phase functions and path integrals
- Symplectic mappings which are stable at infinity
Summary
Introduction
A gradient flow of a Morse function on a compact Riemannian manifold is said to be of Morse-Smale type if the stable and unstable manifolds of any two critical points intersect transversally. For such a Morse-Smale gradient flow there is a chain complex generated by the critical points and graded by the Morse index. The boundary operator has as its (x, y)-entry the number of gradient flow lines running from x to y counted with appropriate signs whenever the difference of the Morse indices is 1. The homology of this chain complex agrees with the homology of the underlying manifold M and this can be used to prove the Morse inequalities.
Around 1986 Floer generalized this idea and discovered a powerful new approach to infinite dimensional Morse theory now called Floer homology. He used this approach to prove the Arnold conjecture for monotone symplectic manifolds and discovered a new invariant for homology 3-spheres called instanton homology. This invariant can roughly be described as the homology of a chain complex generated by the irreducible representations of the fundamental group of the homology 3-sphere M in the Lie group SU(2). These representations can be thought of as flat connections on the principal bundle M × SU(2) and they appear as the critical points of the Chern-Simons functional on the infinite dimensional configuration space of connections on this bundle modulo gauge equivalence.
- Type
- Chapter
- Information
- Symplectic Geometry , pp. 57 - 94Publisher: Cambridge University PressPrint publication year: 1994
- 6
- Cited by