Published online by Cambridge University Press: 05 July 2011
Abstract
Random matrices and orthogonal polynomials have been, for more than a decade, one of the principal sources of the important analytical ideas and exciting problems in the theory of discrete Painlevé equations. In the orthogonal polynomial setting, the discrete Painlevé equations appear in the form of the nonlinear difference relations satisfied by the relevant recurrence coefficients. The principal analytical question is the analysis of certain double-scaling limits of the solutions of the discrete Painlevé equations. In these notes we will present a review on the subject using the Riemann–Hilbert formalism as a main analytic tool.
General setting
These notes are devoted to the orthogonal polynomials and Painlevé equations: both continuous and discrete. In the theory of orthogonal polynomials, the Painlevé equations, both continuous and discrete, appear as the equations satisfied by the recurrence coefficients of orthogonal polynomials. Our main goal is to discuss some of the results concerned with the global asymptotic analysis of the solutions of discrete Painlevé equations generated by the recurrence coefficients. We shall start with the setting of the Riemann–Hilbert formalism for orthogonal polynomials which has been used to achieve these results. Simultaneously, this formalism will allow us to introduce the discrete Painlevé equations in a very natural way. There will be no new facts in this part of the notes, except, perhaps, the way in which the accents between the different aspects of the subject are distributed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.