Book contents
- Frontmatter
- Contents
- Contributors
- 1 Introduction
- 2 Application of genetic epidemiology to dissecting host susceptibility/resistance to infection illustrated with the study of common mycobacterial infections
- 3 The diverse genetic basis of immunodeficiencies
- 4 Genetic diversity in the major histocompatibility complex and the immune response to infectious diseases
- 5 The cystic fibrosis transmembrane conductance regulator
- 6 The influence of inherited traits on malaria infection
- 7 Polymorphic chemokine receptor and ligand genes in HIV infection
- 8 NRAMP 1 and resistance to intracellular pathogens
- 9 The interleukin-12/interferon-γ loop is required for protective immunity to experimental and natural infections by Mycobacterium
- 10 Mannose-binding lectin deficiency and susceptibility to infectious disease
- 11 Blood group phenotypes and infectious diseases
- 12 Genetics of human susceptibility to infection and hepatic disease caused by schistosomes
- 13 Genetic susceptibility to prion diseases
- Index
- Plate section
7 - Polymorphic chemokine receptor and ligand genes in HIV infection
Published online by Cambridge University Press: 14 August 2009
- Frontmatter
- Contents
- Contributors
- 1 Introduction
- 2 Application of genetic epidemiology to dissecting host susceptibility/resistance to infection illustrated with the study of common mycobacterial infections
- 3 The diverse genetic basis of immunodeficiencies
- 4 Genetic diversity in the major histocompatibility complex and the immune response to infectious diseases
- 5 The cystic fibrosis transmembrane conductance regulator
- 6 The influence of inherited traits on malaria infection
- 7 Polymorphic chemokine receptor and ligand genes in HIV infection
- 8 NRAMP 1 and resistance to intracellular pathogens
- 9 The interleukin-12/interferon-γ loop is required for protective immunity to experimental and natural infections by Mycobacterium
- 10 Mannose-binding lectin deficiency and susceptibility to infectious disease
- 11 Blood group phenotypes and infectious diseases
- 12 Genetics of human susceptibility to infection and hepatic disease caused by schistosomes
- 13 Genetic susceptibility to prion diseases
- Index
- Plate section
Summary
Human immunogenetic studies beginning in 1996 have produced clear evidence that initial acquisition of HIV-1 infection can be effectively blocked by homozygosity for a 32-bp deletion (Δ32) in the open reading frame of the beta (C-C motif) chemokine receptor 5 (CCR5) and further inhibited by the Δ32 heterozygous genotype or by Δ32 in combination with another mutation that also introduces a premature stop codon in CCR5. Conversely, homozygosity for the CCR2-CCR5 HHE haplotype defined by several single-nucleotide polymorphisms (SNPs) appears to enhance HIV-1 acquisition. The two closely related CCR2-CCR5 haplotypes HHE and HHG*2 (=CCR5-Δ32) and probably others [e.g., HHF*2 (=CCR2-64I)] are also associated with varying rates of HIV-1 disease progression against certain ethnic backgrounds. Additional but less consistent associations with both HIV-1 infection and disease progression have been documented for SDF-1, RANTES (SCYA5), CX3CR1, and MIP-1α polymorphisms within the chemokine receptor and ligand system. Both chance association and population heterogeneity probably account for some of the inconsistencies. More recent recognition of CCR2-CCR5 haplotype-mediated effects on HIV-1 RNA concentration implies that CCR polymorphisms are important early determinants of the virus–host equilibrium. Evolving usage of chemokine receptors by HIV-1 may cloud the interpretation of newly acquired data and impede translation of this research into improvements in clinical care. The functional complexity of the chemokine system and its interactions with other host and viral factors calls for a comprehensive analytic approach to the elucidation of immunogenetic influences on HIV/AIDS and vigilance for effects of viral adaptation.
- Type
- Chapter
- Information
- Susceptibility to Infectious DiseasesThe Importance of Host Genetics, pp. 185 - 220Publisher: Cambridge University PressPrint publication year: 2003