Published online by Cambridge University Press: 05 July 2015
Abstract
The notion of well quasi-order (wqo) from the theory of ordered sets often arises naturally in contexts where one deals with infinite collections of structures which can somehow be compared, and it then represents a useful discriminator between ‘tame’ and ‘wild’ such classes. In this article we survey such situations within combinatorics, and attempt to identify promising directions for further research. We argue that these are intimately linked with a more systematic and detailed study of homomorphisms in combinatorics.
1 Introduction
In combinatorics, indeed in many areas of mathematics, one is often concerned with classes of structures that are somehow being compared, e.g. in terms of inclusion or homomorphic images. In such situations one is naturally led to consider downward closed collections of such structures under the chosen orderings. The notion of partial well order (pwo), or its mild generalisation well quasi-order (wqo), can then serve to distinguish between the ‘tame’ and ‘wild’ such classes. In this article we will survey the guises in which wqo has made an appearance in different branches of combinatorics, and try to indicate routes for further development which in our opinion will be potentially important and fruitful.
The aim of this article is to identify major general directions in which wqo has been deployed within combinatorics, rather than to provide an exhaustive survey of all the specific results and publications within the topics touched upon. In this section we introduce the notion of wqo, and present what is arguably the most important foundational result, Higman's Theorem. In Section 2 we attempt a broad-brush picture of wqo in combinatorics, linking it to the notion of homomorphism and its different specialised types. The central Sections 3–5 present three ‘case studies’ – words, graphs and permutations – where wqo has been investigated, and draw attention to specific instances of patterns and phenomena already outlined in Section 2. Finally, in Section 6, we reinforce the homomorphism view-point, and explore possible future developments from this angle.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.