Book contents
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- SN 1987A, SN 1993J, and Other Supernovae
- X-Rays and γ-Rays from SN 1987A
- Spectrophotometry of SN 1987A from the Kuiper Airborne Observatory
- Infrared Spectroscopy of SN 1987A
- SN 1987A: Observations at Later Phases
- Freeze out, IR-Catastrophes, and Non-thermal Emission in SNe
- Understanding the Nebular Spectrum of SN 1987A
- The Oxygen 1.13 µm Fluorescence Line of SN 1987A: a Diagnostic for the Ejecta of Hydrogen-Rich Supernovae
- Review of Contributions to the Workshop on SN 1993J
- A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
Understanding the Nebular Spectrum of SN 1987A
from SN 1987A, SN 1993J, and Other Supernovae
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Participants
- Preface
- Acknowledgements
- Observations of Supernovae and the Cosmic Distance Scale
- Type Ia Supernovae
- Type Ib and Type II Supernovae
- SN 1987A, SN 1993J, and Other Supernovae
- X-Rays and γ-Rays from SN 1987A
- Spectrophotometry of SN 1987A from the Kuiper Airborne Observatory
- Infrared Spectroscopy of SN 1987A
- SN 1987A: Observations at Later Phases
- Freeze out, IR-Catastrophes, and Non-thermal Emission in SNe
- Understanding the Nebular Spectrum of SN 1987A
- The Oxygen 1.13 µm Fluorescence Line of SN 1987A: a Diagnostic for the Ejecta of Hydrogen-Rich Supernovae
- Review of Contributions to the Workshop on SN 1993J
- A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra
- Supernovae and Circumstellar Matter
- Supernova Remnants
- Catalogues
- List of Contributed Papers
Summary
The nebular spectra of supernovae differ from those of better-known emission nebulae in that many of the emission lines are optically thick. Here we sketch the theory for interpreting such spectra, and show how it can be used to interpret prominent emission line systems in the spectrum of SN 1987A. As examples, we describe: (1) a simple method to infer the density of O I from observations of the evolution of the doublet ratio in [OI]λλ6300; (2) new kind of hydrogen recombination line spectrum; (3) an analysis showing that the Ca II infrared emission lines must come from primordial, not newly-synthesized, calcium; (4) a theory for the Fe/Co/Ni emission lines that shows that the inner envelope of SN 1987A must have a foamy texture, in which low density radioactive bubbles of Fe/Co/Ni reside in a massive substrate of hydrogen, helium, and other elements.
Introduction
Conventional wisdom holds that supernova explosions produce most of the heavy elements in the universe, and a major goal of astronomy is to test this hypothesis through observations of supernova spectra. For this purpose, SN 1987A should be a Rosetta Stone. We have observed its spectrum in far greater detail than that of any other supernova: at wavelength bands, such as gamma rays and far infrared, where no other supernova has been observed; with almost daily (nightly!) observations continuing for more than seven years after outburst; and with unprecedented spectral resolution (McCray 1993).
- Type
- Chapter
- Information
- Supernovae and Supernova RemnantsIAU Colloquium 145, pp. 223 - 234Publisher: Cambridge University PressPrint publication year: 1996
- 3
- Cited by