Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T01:50:17.519Z Has data issue: false hasContentIssue false

10 - Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

Early in 1886, it was demonstrated that the addition of gypsum (CaSO4ċ2H2O) to anaerobic mud enrichments containing cellulose led to the production of the malodorous gas, hydrogen sulphide (Hoppe-Seyler, 1886). Soon after, Beijerinck first provided evidence of a microorganism reducing sulphate into sulphide, named as Spirillum desulphuricans (Beijerinck, 1895), which was the first sulphate-reducing bacterium (SRB) isolated in the world. As pointed out by Voordouw (1995), Beijerinck had already addressed, at the end of the nineteenth century, questions to the scientific community with regard to the metabolism and ecological distribution of the SRB, which are still nowadays themes of debate. SRB were first believed to use a limited range of substrates as energy sources (e.g. hydrogen, lactate, ethanol, etc. …), but recent biochemical and microbiological studies have greatly extended the range of electron donors and electron acceptors known to be used by SRB (Fauque et al., 1991; Widdel, 1988). Indeed the latter may have an autotrophic, lithoautotrophic, heterotrophic, or respiration type of life under anaerobiosis and their possible microaerophilic nature has been discussed in the literature (Fauque and Ollivier, 2004). Besides their common ability to use sulphate as terminal electron acceptor, many of them were shown to utilize other mineral sulphur compounds, including elemental sulphur, thiosulphate, sulphite, polythionates and polysulphide (Le Faou et al., 1990). In addition, SRB have been demonstrated to reduce a wide range of heavy metals and radionuclides including Fe(III), and U(VI).

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 305 - 328
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, C. M., Jones, D. M. and Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431, 291–4CrossRefGoogle ScholarPubMed
Alazard, D., Dukan, S., Urios, A.et al. (2003). Desulfovibrio hydrothermalis sp. nov., a novel sulphate-reducing bacterium isolated from hydrothermal vents. International Journal of Systematic and Evolutionary Microbiology, 53, 173–8CrossRefGoogle Scholar
Audiffrin, C., Cayol, J.-L., Joulian, C.et al. (2003). Desulfonauticus submarinus gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 53, 1585–90CrossRefGoogle Scholar
Bale, S. J., Goodman, K., Rochelle, P. A.et al. (1997). Desulfovibrio profundus sp. nov., a novel barophilic sulphate-reducing bacterium from deep sediment layers in the Japan Sea. International Journal of Systematic Bacteriology, 47, 515–21CrossRefGoogle Scholar
Barth, T. (1991). Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Applied Geochemistry, 6, 1–15CrossRefGoogle Scholar
Barth, T. and Riis, M. (1992). Interactions between organic acid anions in formation waters and reservoir mineral phases. Organic Geochemistry, 19, 455–82CrossRefGoogle Scholar
Basso, O., Lascourrèges, J.-F., Jarry, M. and Magot, M. (2005). The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environmental Microbiology, 7, 13–21CrossRefGoogle ScholarPubMed
Bastin, E. S. (1926). The problem of the natural reduction of sulphates. Bulletin of the American Association of Petroleum Geologists, 10, 1270–99Google Scholar
Beeder, J., Nilsen, R. K., Rosnes, J. T., Torsvik, T. and Lien, T. (1994). Archaeglobus fulgidus isolated from hot North Sea oil field water. Applied and Environmental Microbiology, 60, 1227–31Google Scholar
Beeder, J., Torsvik, T. and Lien, T. (1995). Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulphate-reducing bacterium from oil field water. Archives of Microbiology, 164, 331–6CrossRefGoogle Scholar
Beijerinck, W. M. (1895). Ueber Spirillum desulphuricans als ursache von sulfat-reduction. Zentralblatt für Bakteriologie und Parasitenkunde, 1, 1–9, 49–59 and 104–14.Google Scholar
Birkeland, N.-K. (2005). Sulphate-reducing Bacteria and Archaea. In Petroleum Microbiology, Ollivier, B. and Magot, M. (eds.). Washington, D.C.: ASM Press, pp. 35–54.CrossRefGoogle Scholar
Bonch-Osmolvskaya, E. A., Miroshnichenko, M. L., Lebedinsky, A. V.et al. (2003). Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and Environmental Microbiology, 69, 6143–51CrossRefGoogle Scholar
Burggraf, S., Jannasch, H. W., Nicolaus, B. and Stetter, K. O. (1990). Archaeoglobus profundus sp. nov., represents a new species within the sulphate-reducing Archaebacteria. Systematic and Applied Microbiology, 13, 24–8CrossRefGoogle Scholar
Castro, H. F., Williams, N. H. and Ogram, A. (2000). Phylogeny of sulphate-reducing bacteria. FEMS Microbiology Ecology, 31, 1–9Google Scholar
Christensen, B., Torsvik, T. and Lien, T. (1992). Immunomagnetically captured thermophilic sulphate-reducing bacteria from North Sea oil field waters. Applied and Environmental Microbiology, 58, 1244–8Google Scholar
Cottrell, M. T. and Cary, S. G. (1999). Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Applied and Environmental Microbiology, 65, 1127–32Google ScholarPubMed
Dhillon, A., Teske, A., Dillon, J., Stahl, D. A. and Sogin, M. L. (2003). Molecular characterization of sulphate-reducing bacteria in the Guaymas Basin. Applied and Environmental Microbiology, 69, 2765–72CrossRefGoogle Scholar
Fauque, G. (1995). Ecology of sulphate-reducing bacteria. In Barton, L. L. (ed.), Sulphate-reducing bacteria. New York and London: Plenum Press. pp. 217–41.CrossRefGoogle Scholar
Fauque, G., LeGall, J. and Barton, L. L. (1991). Sulphate-reducing and sulfur-reducing bacteria. In Shively, J. M. and Barton, L. L. (eds.), Variations in autotrophic life. London: Academic Press. pp. 271–337.Google Scholar
Fauque, G. and Ollivier, B. (2004). Anaerobes: the sulphate-reducing bacteria as an example of metabolic diversity. In Bull, A. (ed.), Microbial diversity and bioprospecting. Washington, DC: ASM Press, pp. 169–76.CrossRefGoogle Scholar
Feio, M. J., Zinkevich, V., Beech, I. W.et al. (2004). Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir. International Journal of Systematic and Evolutionary Microbiology, 54, 1747–52CrossRefGoogle ScholarPubMed
Galushko, A. S. and Rozanova, E. P. (1991). Desulfobacterium cetonicum. sp. nov: a sulphate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology, 60, 102–7Google Scholar
L'Haridon, S., Reysenbach, A. L., Glénat, P., Prieur, D. and Jeanthon, P. (1995). Hot subterranean biosphere in a continental oil reservoir. Nature, 377, 223–4CrossRefGoogle Scholar
Head, I. M., Jones, D. M. and Larter, S. R. (2003). Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426, 344–52CrossRefGoogle ScholarPubMed
Hoppe-Seyler, F. (1886). Ueber die gährung der Cellulose mit Bildung von methan und Kohlensaüre: II. Der Zerfall der Cellulose durch Gährung unter Bildung von Methan und Kohlensaüre und die Erscheinungen, welche dieser Process veranlasst. Zeitschrift für Physiologische Chemie, 10, 401–40Google Scholar
Huber, H., Jannasch, H., Rachel, R., Fuchs, T. and Stetter, K. O. (1997). Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology, 20, 374–80CrossRefGoogle Scholar
Jannasch, H. W. and Mottl, M. J. (1985). Geomicrobiology of deep-sea hydrothermal vents. Science, 229, 717–25CrossRefGoogle ScholarPubMed
Jeanthon, C. (2000). Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek, 77, 117–33CrossRefGoogle ScholarPubMed
Jeanthon, C., L'Haridon, S., Cueff, V.et al. (2002). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulphate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. International Journal of Systematic and Evolutionary Microbiology, 52, 765–72Google Scholar
Faou, A., Rajagopal, B. S., Daniels, L. and Fauque, G. (1990). Thiosulphate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiology Reviews, 75, 351–82CrossRefGoogle Scholar
Leu, J.-Y, McGovern-Traa, C. P., Porter, A. J. R. and Hamilton, W. A. (1999). The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea. Letters in Applied Microbiology, 29, 246–52CrossRefGoogle ScholarPubMed
Lien, T. and Beeder, J. (1997). Desulfobacter vibrioformis sp. nov., a sulphate-reducer from a water–oil separation system. International Journal of Systematic Bacteriology, 47, 1124–8CrossRefGoogle Scholar
Lien, T., Madsen, M., Steen, I. H. and Gjerdevik, K. (1998). Desulfobulbus rhabdoformis sp. nov., a sulphate reducer from a water–oil separation system. International Journal of Systematic Bacteriology, 48, 469–74CrossRefGoogle Scholar
Magot, M., Basso, O., Tardy-Jacquenod, C. and Caumette, P. (2004). Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulphate-reducing bacteria isolated from deep subsurface oilfield water. International Journal of Systematic and Evolutionary Microbiology, 54, 1693–7CrossRefGoogle Scholar
Magot, M., Caumette, P., Desperrier, J. M.et al. (1992). Desulfovibrio longus sp. nov., a sulphate-reducing bacteria isolated from oil-producing well. International Journal of Systematic Bacteriology, 42, 398–403CrossRefGoogle Scholar
Magot, M., Ollivier, B. and Patel, B. K. C. (2000). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 77, 103–16CrossRefGoogle ScholarPubMed
Miranda-Tello, E., Fardeau, M.-L., Fernandez, L.et al. (2003). Desulfovibrio capillatus sp. nov., a novel sulphate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe, 9, 97–103CrossRefGoogle Scholar
Moura, I., Bursakov, S., Costa, C. and Moura, J. J. G. (1997). Nitrate and nitrite utilization in sulphate-reducing bacteria. Anaerobe, 3, 279–90CrossRefGoogle Scholar
Moussard, H., L'Haridon, S., Tindall, B. J.et al. (2004). Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulphate-reducing bacterium isolated from the Central Indian Ridge. International Journal of Systematic and Evolutionary Microbiology, 54, 227–33CrossRefGoogle Scholar
Nazina, T. N., Ivanova, A. E., Kanchaveli, L. P. and Rozanova, E. P. (1988). A new sporeforming thermophilic methylotrophic sulphate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology, 57, 823–7Google Scholar
Nazina, T. N. and Rozanova, E. P. (1978). Thermophilic sulphate-reducing bacteria from oil strata. Microbiology, 47, 142–8Google Scholar
Nga, D. P., Cam Ha, D. T., Hien, L. T. and Stan-Lotter, H. (1996). Desulfovibrio vietnamensis sp. nov., a halophilic sulphate-reducing bacterium from Vietnamese oil fields. Anaerobe, 2, 385–92Google Scholar
Nilsen, R. K., Beeder, J., Thostenson, T. and Torsvik, T. (1996a). Distribution of thermophilic marine sulphate reducers in North Sea oil field waters and oil reservoirs. Applied and Environmental Microbiology, 62, 1793–8Google Scholar
Nilsen, R. K., Torsvik, T. and Lien, T. (1996b). Desulfotomaculum thermocisternum sp. nov., a sulphate reducer isolated from a hot North Sea oil reservoir. International Journal of Systematic Bacteriology, 46, 397–402CrossRefGoogle Scholar
Ollivier, B. and Cayol, J.-L. (2005). The fermentative, iron-reducing, and nitrate-reducing microorganisms. In Ollivier, B. and Magot, M. (eds.), Petroleum microbiology. Washington, DC: ASM Press. pp. 71–88.CrossRefGoogle Scholar
Orphan, V. J., Taylor, L. T., Hafenbradl, D. and Delong, E. F. (2000). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Applied and Environmental Microbiology, 66, 700–11CrossRefGoogle ScholarPubMed
Osipov, G. A., Nazina, T. N. and Ivanova, A. E. (1995). Study of species composition of microbial community of water-flooded oil field by chromato-mass spectrometry. Microbiology, 63, 490–3Google Scholar
Philippi, G. T. (1977). On the depth, time, and mechanism of origin of the heavy to medium gravity naphtenic crude oil. Geochimica Cosmochimica Acta, 41, 33–52CrossRefGoogle Scholar
Rees, G. N., Grassia, G. S., Sheehy, A. J., Dwivedi, P. P. and Patel, B. K. C. (1995). Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulphate-reducing bacterium from a petroleum reservoir. International Journal of Systematic Bacteriology, 45, 85–9CrossRefGoogle Scholar
Reysenbach, A.-L., Longnecker, K. and Kirshtein, J. (2000). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Applied and Environmental Microbiology, 66, 3798–806CrossRefGoogle Scholar
Rosnes, J. T., Torsvik, T. and Lien, T. (1991). Spore-forming thermophilic sulphate-reducing bacteria isolated from North Sea oil field waters. Applied and Environmental Microbiology, 57, 2302–7Google Scholar
Rozanova, E. P. and Khudyakova, A. I. (1974). A new nonspore-forming thermophilic sulphate-reducing organism, Desulfovibrio thermophilus nov. sp. Microbiology, 43, 1069–75Google Scholar
Rozanova, E. P. and Nazina, T. N. (1979). Occurrence of thermophilic sulphate-reducing bacteria in oil-bearing strata. Microbiology, 48, 907–11Google Scholar
Rozanova, E. P., Nazina, T. N. and Galushko, A. S. (1988). Isolation of a new genus of sulphate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov. sp. nov. Microbiology, 57, 634–41Google Scholar
Rozanova, E. P. and Pivovarova, T. A. (1988). Reclassification of Desulfovibrio thermophilus (Rozanova, Khudyakova, 1974). Microbiology, 57, 102–6Google Scholar
Rozanova, E. P., Tourova, T. V.et al. (2001). Desulfacinum subterraneum sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a high-temperature oil field. Microbiology, 70, 466–71CrossRefGoogle Scholar
Rueter, P., Rabus, R., Wilkes, H.et al. (1994). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372, 455–8CrossRefGoogle ScholarPubMed
Shen, Y. and Buick, R. (2004). The antiquity of microbial sulphate-reduction. Earth Science Reviews, 64, 243–72CrossRefGoogle Scholar
Sievert, S. M. and Kuever, J. (2000). Desulfacinum hydrothermale sp. nov., a thermophilic, sulphate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). International Journal of Systematic and Evolutionary Microbiology, 50, 1239–46CrossRefGoogle Scholar
Stetter, K. O., Huber, R., Blöchl, E.et al. (1993). Hyperthermophilic Archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365, 743–5CrossRefGoogle Scholar
Tardy-Jacquenod, C., Caumette, P., Matheron, R.et al. (1996a). Characterization of sulphate-reducing bacteria isolated from oil-field waters. Canadian Journal of Microbiology, 42, 259–66CrossRefGoogle Scholar
Tardy-Jacquenod, C., Magot, M., Laigret, F.et al. (1996b). Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulphate-reducing bacterium isolated from an oil pipeline. International Journal of Systematic Bacteriology, 46, 710–15CrossRefGoogle Scholar
Tardy-Jacquenod, C., Magot, M., Patel, B. K. C., Matheron, R. and Caumette, P. (1998). Desulfotomaculum halophilum sp. nov., a halophilic sulphate-reducing bacterium isolated from oil production facilities. International Journal of Systematic Bacteriology, 48, 333–8CrossRefGoogle Scholar
Telang, A. J., Ebert, S., Foght, J. M.et al. (1997). Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Applied and Environmental Microbiology, 63, 1785–93Google Scholar
Vance, I. and Trasher, D. R. (2005). Reservoir souring: mechanisms and prevention. In Ollivier, B. and Magot, M. (eds.), Petroleum Microbiology, Washington, DC: ASM Press. pp. 123–42.CrossRefGoogle Scholar
Voordouw, G. (1995). The genus Desulfovibrio: the centennial. Applied and Environmental Microbiology, 61, 2813–19Google ScholarPubMed
Voordouw, G., Armstrong, S. M., Reimer, M. F.et al. (1996). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulphate-reducing, fermentative, and sulfide-oxidizing bacteria. Applied and Environmental Microbiology, 62, 1623–9Google Scholar
Watanabe, K., Kodama, Y. and Kaku, N. (2002). Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiology, 2, 23–32CrossRefGoogle Scholar
Widdel, F. (1988). Microbiology and ecology of sulphate- and sulfur-reducing bacteria. In Zehnder, A. J. B. (ed.), Biology of Anaerobic Microorganisms. New York: John Wiley and Sons, Inc. pp. 469–585.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×