Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
11 - The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
Summary
GENERAL INTRODUCTION
Approximately 70% of the Earth's environment is marine, which includes substantial sediment deposits, some of which can be greater than 10 km in depth (Fowler, 1990). Although these sediments contain the largest global organic carbon reservoir (∼15 000 × 1018 g C, Hedges and Keil, 1995), apart from shallow margin sediments (to 200 m water depth), they have been considered to be relatively biogeochemically inactive. For example, Jørgensen (1983) calculated that margin sediments accounted for 83% of global marine sediment oxygen uptake whilst only representing 8.6% of global sediment area. In contrast, deeper sediments (200 to >4000 m water depths), despite being ∼91% of marine sediment area, accounted for only 17% of global oxygen uptake. The situation was considered even more extreme for rates of sulphate reduction, with this being responsible for, respectively, 50% and 0% of all organic matter being degraded in margin and deep water sediments (>4000 m water depths) (Jørgensen, 1983). This low activity was consistent with results demonstrating the limited depth distribution of prokaryotic populations in deep sediments. Morita and ZoBell (1955) concluded that the marine biosphere ended at 7.47 m deep, based on their inability to culture bacteria at this or greater depths. Reports of prokaryotes being isolated from deeper sediments were considered to be contaminants introduced during sampling, or dormant organisms being re-activated (ZoBell, 1938).
- Type
- Chapter
- Information
- Sulphate-Reducing BacteriaEnvironmental and Engineered Systems, pp. 329 - 358Publisher: Cambridge University PressPrint publication year: 2007
References
- 3
- Cited by