Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
5 - Response of sulphate-reducing bacteria to oxygen
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
Summary
PRESENCE OF SULPHATE-REDUCING BACTERIA IN OXIDISED HABITATS
During the second half of the nineteenth century the formation of sulphide from sulphate was recognised as a biogenic process (Meyer, 1864). While it was initially suggested that algae were the catalysing organisms (Cohn, 1867), Hoppe-Seyler demonstrated in 1886 that the process required anoxic conditions and was chemotrophic, requiring external electron donors. In 1895, Beijerinck proved that sulphate reduction is catalysed by bacteria and described the first pure culture, Spirillum desulfuricans. This organism was described as strictly anaerobic and was irreversibly inhibited by oxygen.
The view that sulphate-reducing bacteria (SRB) are extremely sensitive to oxygen started to change in the late 1970s when sulphate reduction was demonstrated to occur also in oxidised sediment layers which showed no traces of FeS and were considered oxic (Jørgensen, 1977). Similarly, cultivation-based studies revealed the presence of viable sulphate reducers within these layers (Laanbroek and Pfennig, 1981; Battersby et al., 1985; Jørgensen and Bak, 1991). However, it was found that oxygen did not penetrate as deep into sediments as previously assumed and that large parts of the oxidised, hence FeS-free layers, were in fact anoxic. In sediment layers that contain oxidised manganese or iron species, sulphide can be chemically reoxidised to elemental sulphur (Aller and Rude, 1988), or, in the case of manganese oxide, even to thiosulphate (Schippers and Jørgensen, 2001).
- Type
- Chapter
- Information
- Sulphate-Reducing BacteriaEnvironmental and Engineered Systems, pp. 167 - 184Publisher: Cambridge University PressPrint publication year: 2007
References
- 8
- Cited by