Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
14 - Bioremediation of metals and metalloids by precipitation and cellular binding
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
Summary
INTRODUCTION
Interactions between dissimilatory sulphate-reducing bacteria (SRB) and metal(loid) ions have been studied since the first half of the twentieth century and the ability of SRB to bring about changes in the speciation of metal(loid)s has been recognized for much of this time. Early work focused on the role of SRB as nuisance organisms and metal(loid) interactions with SRB were often studied in the context of their use as metabolic poisons to control SRB activity (Postgate, 1952; Newport and Nedwell, 1988; Nemati et al., 2001). With growing awareness of the importance of microorganisms in biogeochemical cycling, the emphasis of research has shifted to the environmental roles of SRB. Their capacity to control the mobility of metals in aqueous sediments by the formation of poorly-soluble metal sulphides is now apparent and SRB-generated metal sulphides constitute an important environmental sink for many metals (Morse et al., 1987; see also Chapter 13, this volume). Bioremediation of dissolved metal(loid)s is an application for which SRB may be particularly suitable, given that sulphate frequently co-occurs with toxic metal ions in, e.g. metal-processing wastes and acid mine-drainage waters. SRB have the apparently unique potential to simultaneously remove metals, sulphate and acidity through the bioprecipitation of metal sulphides – a phenomenon that still represents one of the most successful biological approaches to metal removal from aqueous media. Other abiotic chemical reactions that can effect the removal of metal(loid) ions from solution take place during active sulphate-reduction.
- Type
- Chapter
- Information
- Sulphate-Reducing BacteriaEnvironmental and Engineered Systems, pp. 405 - 434Publisher: Cambridge University PressPrint publication year: 2007
References
- 21
- Cited by