Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T05:57:00.792Z Has data issue: false hasContentIssue false

13 - Bioprocess engineering of sulphate reduction for environmental technology

Published online by Cambridge University Press:  22 August 2009

Larry L. Barton
Affiliation:
University of New Mexico
W. Allan Hamilton
Affiliation:
University of Aberdeen
Get access

Summary

INTRODUCTION

The microbiota present in the sulphur cycle have been studied since the end of the nineteenth century when the pioneering work of the famous microbiologists Winogradsky and Beijerinck took place. Sulphur conversions involve the metabolism of several different specific groups of bacteria, e.g. sulphate-reducing bacteria (SRB), phototrophic sulphur bacteria and thiobacilli, specialized to use these sulphur compounds in their different redox states (Lens and Kuenen, 2001). Many of these microorganisms possess unique metabolic and ecophysiological features, and to date there are still regular reports of novel microorganisms with extraordinary properties. Several of the microbial conversions of the sulphur cycle can be implemented for pollution control (Table 13.1). This chapter overviews the applications in environmental technology, which utilize the metabolism of SRB as the key process.

Technological utilization of SRB sounds at first somewhat controversial, as sulphate reduction has been considered unwanted for many years in anaerobic wastewater treatment (Hulshoff Pol et al., 1998). Emphasis of the research in the 1970s–1980s was mainly on the prevention or minimalization of sulphate reduction during methanogenic wastewater treatment (Colleran et al., 1995). From the 1990s onwards, interest has grown in applying sulphate reduction for the treatment of specific wastestreams, e.g. inorganic sulphate-rich wastewaters such as acid mine drainage, metal polluted groundwater and flue-gas scrubbing waters. Nowadays, sulphur-cycle-based technologies are not solely considered as “end-of-pipe” applications, but their potential for pollution prevention as well as for sulphur, metal or water recovery and re-use are now fully recognized.

Type
Chapter
Information
Sulphate-Reducing Bacteria
Environmental and Engineered Systems
, pp. 383 - 404
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahuja, P., Gupta, R. and Saxena, R. K. (1999). Sorption and desorption of cobalt by Oscillatoria anguitissima. Curr. Microbiol., 39, 49–52CrossRefGoogle Scholar
Aksu, Z. (2002). Determination of the equilibrium, kinetics and thermodynamic parameters of the batch sorption of nickel (II) ions onto Chlorella vulgaris. Process Biochem., 38, 89–99CrossRefGoogle Scholar
Artola, A., Martin, M., Balaguer, D. M. and Rigola, M. (2000). Isotherm model analyses for the adsorption of Cd(II), Cu(II), Ni(II) and Zn(II) on anaerobically digested sludge. J. Colloid. Inter. Sci., 232, 64–70CrossRefGoogle Scholar
Barton, C. D. and Karathanasis, A. D. (1999). Renovation of a failed constructed wetland treating acid mine drainage. Environmental Geology, 39, 39–50CrossRefGoogle Scholar
Bechard, G., Yamazaki, H., Gould, W. D. and Bedard, P. (1994). Use of cellulosic substrates for the microbial treatment of acid mine drainage. J. Environmental Qual., 23, 111–16CrossRefGoogle Scholar
Benner, S. G., Blowes, D. W., Ptacek, C. J. and Mayer, K. U. (2002). Rates of sulphate reduction and metal sulfide precipitation in a permeable reactive barrier. Applied Geochemistry, 17, 301–20CrossRefGoogle Scholar
Beuling, E. E., Dusschoten, D., Lens, P.et al. (1998). Characterization of the diffusive properties of biofilms using pulsed field gradient nuclear magnetic resonance. Biotech. Bioeng., 60, 283–913.0.CO;2-D>CrossRefGoogle ScholarPubMed
Buisman, C. N. J., Geraats, B. G., Ijspeert, P. and Lettinga, G. (1990). Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotech. Bioeng., 35, 50–6CrossRefGoogle Scholar
Chang, I. S., Shin, P. K. and Kim, B. H. (2000). Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Wat. Res., 34, 1269–77CrossRefGoogle Scholar
Cheong, Y.-W., Min, J.-S. and Kwon, K.-S. (1998). Metal removal efficiencies of substrates for treating acid mine drainage of the Dalsung mine, South Korea. Journal of Geochemical Exploration, 64, 147–52CrossRefGoogle Scholar
Clancy, P. B., Venkataraman, N. and Lynd, L. R. (1992). Biochemical inhibition of sulphate reduction in batch and continuous anaerobic digesters. Wat. Sci. Tech., 25, 51–60CrossRefGoogle Scholar
Cocos, I. A., Zagury, G. J., Clement, B. and Samson, R. (2002). Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Wat. Res., 32, 167–77CrossRefGoogle Scholar
Colleran, E., Finnegan, S. and Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek, 67, 29–46CrossRefGoogle ScholarPubMed
Crocetti, G. R., Hugenholtz, P., Bond, P. L.et al. (2000). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol., 66, 1175–82CrossRefGoogle ScholarPubMed
Dabert, P., Delgenes, J.-P., Moletta, R. and Godon, J.-J. (2002). Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Reviews in Environmental Science and Bio/Technology, 1, 39–49CrossRefGoogle Scholar
Smul, A. and Verstraete, W. (1999). The phenomenology and the mathematical modeling of the silicone-supported chemical oxidation of aqueous sulfide to elemental sulfur with ferric sulphate. J. Chem. Technol. Biotechnol., 74, 456–663.0.CO;2-N>CrossRefGoogle Scholar
Edenborn, H. M. (2004). Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings. Bioresource Technology, 92, 111–19CrossRefGoogle ScholarPubMed
El-Shafey, E., Cox, M., Pichugin, A. A. and Appleton, Q. (2002). Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqeous solution. J. Chem. Technol. Biotechnol., 77, 429–36CrossRefGoogle Scholar
Esposito, G., Veeken, A., Weijma, J. and Lens, P. N. L. (2006). Effect of the use of biogenic sulphide on ZnS precipitation under different process conditions. Separation and Purification Technology, 51, 31–9CrossRef
Fedorovich, V., Greben, M., Kalyuzhnyi, S.et al. (2000). Use of membranes for hydrogen supply in a sulphate reducing reactor. Biodegradation, 11, 295–303CrossRefGoogle Scholar
Fedorovich, V., Lens, P. and Kalyuzhnyi, S. (2003). Extension of anaerobic digestion model no. 1 with the processes of sulphate reduction. Applied Biochemistry and Biotechnology, 109, 33–46CrossRefGoogle Scholar
Gibert, O., Pablo, J., Cortina, J. L. and Ayora, C. (2004). Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Wat. Res., 38, 4186–96CrossRefGoogle ScholarPubMed
Gonzalez-Gil, G., Lens, P., Aelst, A.et al. (2001). Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl. Environ. Microbiol., 67, 3683–92CrossRefGoogle ScholarPubMed
Gonzalez-Gil, G., Jansen, S., Zandvoort, M. H. and Leeuwen, H. P. (2003). Effect of yeast extract on speciation and bioavailability in nickel and cobalt in anaerobic bioreactors. Biotech. Bioeng., 82, 134–42CrossRefGoogle ScholarPubMed
Gray, N. D., Howarth, R., Pickup, R. W., Gwyn Jones, J. and Head, I. M. (2000). Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol., 66, 4518–22CrossRefGoogle ScholarPubMed
Haridas, A., Majumdar, S. and Kumar, K. (2000). Reverse fluidised loop reactor for oxidation of sulphide. In Workshop on Anaerobic Processes in Wastewater Management., MHO-cooperation Cochin University of Science and Technology, Technical University Delft and Wageningen University. 9–15 October, Cochin, India.Google Scholar
Haytoglu, B., Demerir, G. N. and Yetis, U. (2001). Effectiveness of anaerobic biomass in adsorbing heavy metals. Wat. Sci. Technol., 44, 245–52CrossRefGoogle ScholarPubMed
Ho, Y. S., Wase, D. A. J. and Forster, C. F. (1996). Kinetic studies of competitive heavy metal sorption by sphagnum moss peat. Environ. Technol., 17, 71–6CrossRefGoogle Scholar
Huisman, J. W., Heuvel, J. C. and Ottengraf, S. P. P. (1990). Enhancement of external mass transfer by gaseous end products. Biotechnol. Progr., 6, 425–9CrossRefGoogle Scholar
Hulshoff Pol, L., Lens, P., Stams, A. J. M. and Lettinga, G. (1998). Anaerobic treatment of sulphate-rich wastewaters. Biodegradation, 9, 213–24CrossRefGoogle ScholarPubMed
Jensen, A. B. and Webb, C. (1995). Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microbiol. Technol., 17, 2–10CrossRefGoogle Scholar
Janssen, G. M. C. M. and Teminghoff, E. J. M. (2004). In situ metal precipitation in a zinc contaminated aerobic sandy aquifer by means of biological sulphate reduction. Environ. Sci. Technol., 38, 4002–11CrossRefGoogle Scholar
Jansen, S., Steffen, F., Threels, W. F. and Leeuwen, H. P. (2005). Speciation of Co(II) and Ni(II) in anaerobic bioreactors measured by competitive ligand exchange-adsorptive stripping voltammetry. Environ. Sci. Technol., 39, 9493–9CrossRefGoogle ScholarPubMed
Janssen, A. J. H., Sleyster, R., Kaa, C.et al. (1995). Biological sulphide oxidation in a fed-batch reactor. Biotech. Bioeng., 47, 327–33CrossRefGoogle Scholar
Janssen, A. J. H., Ma, S. C., Lens, P. and Lettinga, G. (1997). Performance of a sulphide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotech. Bioeng., 53, 32–403.0.CO;2-#>CrossRefGoogle Scholar
Janssen, A. J. H., Meijer, S., Bontsema, J. and Lettinga, G. (1998). Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotech. Bioeng., 60, 147–553.0.CO;2-N>CrossRefGoogle Scholar
Jong, T. and Perry, L. (2003). Removal of sulphate and heavy metals by sulphate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactors. Wat. Res., 37, 3379–89CrossRefGoogle Scholar
Kaksonen, A. H., Riekkola-Vanhanen, M. L. and Puhakka, J. A. (2003). Optimization of metal sulfide precipitation in fluidized-bed treatment of acidic wastewater. Wat. Res., 37, 255–66CrossRefGoogle ScholarPubMed
Harris, M. A. and Ragusa, S. (2001). Bioremediation of acid mine drainage using decompostable plant material in a constant flow bioreactor. Environmental Geology, 40, 1192–204Google Scholar
Kim, B. W., Kim, E. H., Lee, S. C. and Chang, H. N. (1993). Model-based control of feed rate and illuminance in a photosynthetic fed-batch reactor for H2S removal. Bioprocess Eng., 8, 263–9CrossRefGoogle Scholar
König, J., Keesman, K. J., Veeken, A. and Lens, P. N. L. (2006). Dynamic modelling and process control of ZnS precipitation. Separation Science Technology. 41(6), 1025–42CrossRefGoogle Scholar
Kurisu, F., Satoh, H., Mino, T. and Matsuo, T. (2002). Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA and the quinone profile method. Wat. Res., 36, 429–38CrossRefGoogle ScholarPubMed
Lens, P., Beer, D., Cronenberg, C.et al. (1993). Inhomogenic distribution of microbial activity in UASB aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol., 59, 3803–15Google Scholar
Lens, P., Gastesi, R., Hulshoff Pol, L. and Lettinga, G. (2003). Use of sulphate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases. Biodegradation, 14, 229–40CrossRefGoogle ScholarPubMed
Lens, P., Sipma, J., Hulshof Pol, L. and Lettinga, G. (2000). Effect of staging and nitrate addition on sulfidogenic acetate removal. Wat. Res., 34, 31–42CrossRefGoogle Scholar
Lens, P., Bosch, M., Hulshoff Pol, L. and Lettinga, G. (1998b). Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Wat. Res., 32, 1178–92CrossRefGoogle Scholar
Lens, P., Vergeldt, F., Lettinga, G. and As, H. (1999). 1H-NMR study of the diffusional properties of methanogenic aggregates. Wat. Sci. Tech., 39, 187–94CrossRefGoogle Scholar
Lens, P., Visser, A., Janssen, A., Hulshoff Pol, L. and Lettinga, G. (1998a). Biotechnological treatment of sulphate rich wastewaters. Crit. Rev. Env. Sci. Technol., 28, 41–88CrossRefGoogle Scholar
Lens, P. N. L., Klijn, R., Lier, J. B., Hulshoff Pol, L. W. and Lettinga, G. (2002). Effect of specific gas loading rate on thermofilic sulphate reduction under acidifying conditons. Wat. Res., 37, 1033–47CrossRefGoogle Scholar
Lens, P. N. L., Korthout, D., Lier, J. B., Hulshoff Pol, L. W. and Lettinga, G. (2001). Effect of upflow velocity on thermofilic sulphate reduction under acidifying conditons. Environ. Technol., 22, 183–93CrossRefGoogle Scholar
Lens, P. N. L. and Kuenen, J. G. (2001). The biological sulfur cycle: novel opportunities for environmental biotechnology. Wat. Sci. Tech., 44, 57–66CrossRefGoogle ScholarPubMed
Lopez, A., Lazaro, N., Priego, J. M. and Marques, A. M. (2000). Effect of pH on the biosorption of nickel and other metals by Pseodomonas fluorescens 4F39. J. Ind. Microbiol. Bioetechnol., 24, 146–51CrossRefGoogle Scholar
Markewitz, K., Cabral, A. R., Panarotto, C. T. and Lefebvre, G. (2004). Anaerobic biodegradation of an organic by-products leachate by interaction with different mine tailings. Journal of Hazardous Materials, 110, 93–104CrossRefGoogle ScholarPubMed
McFarland, M. J. and Jewell, W. J. (1989). In situ control of sulfide emission during thermophilic anaerobic digestion process. Wat. Res., 23, 1571–7CrossRefGoogle Scholar
Mersmann, A. (1999). Crystallization and precipitation. Chem. Eng. Process, 38, 345–53CrossRefGoogle Scholar
Muthumbi, W., Boon, N., Boterdaele, R.et al. (2001). Microbial sulphate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl. Microbiol. Biotechol., 55, 787–93CrossRefGoogle ScholarPubMed
Omil, F., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1996). Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem., 31, 699–710CrossRefGoogle Scholar
Omil, F., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1997a). Characterization of biomass from a sulphidogenic, volatile fatty acid-degrading granular sludge reactor. Enzyme Microb. Technol., 20, 229–36CrossRefGoogle Scholar
Omil, F., Lens, P., Visser, A., Hulshoff Pol, L. W. and Lettinga, G. (1998). Long term competition between sulphate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotech. Bioeng., 57, 676–853.0.CO;2-I>CrossRefGoogle ScholarPubMed
Omil, F., Oude Elferink, S. J. W. H., Lens, P., Hulshoff Pol, L. and Lettinga, G. (1997b). Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulphate reducing and methanogenic bacteria in an acetate fed UASB reactor. Biores. Technol., 60, 113–22CrossRefGoogle Scholar
Oude Elferink, S. J. W. H., Boschker, H. T. S. and Stams, A. J. M. (1998). Identification of sulphate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty-acid biomarkers and 16S rRNA probing. Geomicrobial J., 15, 3–18CrossRefGoogle Scholar
Paulo, P., Kleerebezem, R., Lettinga, G. and Lens, P. N. L. (2005). Cultivation of high-rate sulphate reducing sludge by pH-based electron donor dosage. Journal of Biotechnology, 118, 107–16CrossRefGoogle ScholarPubMed
Prasad, D., Wai, M., Berube, P. and Henry, J. G. (1999). Evaluating substrates in the biological treatment of acid mine drainage. Environmental Technology, 20, 449–58CrossRefGoogle Scholar
Rebac, S., Lier, J. B., Lens, P.et al. (1998). Psychrophilic (6–15 °C) high-rate treatment of malting waste water in a two module EGSB system. Biotechnol. Progr., 14, 856–64CrossRefGoogle ScholarPubMed
Reis, M. A. M., Lemos, P. C. and Carrondo, M. J. T. (1995). Biological sulphate removal of industrial effluents using the anaerobic digestion. Med. Fac. Landbouww. Univ. Gent., 60, 2701–7Google Scholar
Rengaraj, S. and Moon, S. H. (2002). Kinetics of adsorption of Co (II) removal from water and and wastewater by ion exchange resin. Wat. Res., 36, 1783–93CrossRefGoogle ScholarPubMed
Rintala, J., Lepisto, S. and Ahring, B. (1993). Acetate degradation at 70 °C in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70 °C. Appl. Environ. Microbiol., 59, 1742–6Google ScholarPubMed
Rinzema, A. and Lettinga, G. (1988). Anaerobic treatment of sulphate containing waste water. In Wise, D. L. (ed.), Biotreatment systems, Vol III, pp. 65–109. Boca Raton, FL: CRC Press Inc.Google Scholar
Rose, P. D., Boshoff, G. A., Hille, R. P.et al. (1998). An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation, 9, 247–57CrossRefGoogle ScholarPubMed
Santegoeds, C. M., Damgaard, L. R., Hesselink, G.et al. (1999). Distribution of sulphate reducing and methanogenic bacteria in UASB aggregates determined by microsensors and molecular techniques. Appl. Environ. Microbiol., 65, 4618–29Google Scholar
Santegoeds, C. M., Schramm, A. and Beer, D. (1998). Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation, 9, 159–67CrossRefGoogle ScholarPubMed
Särner, E. (1990). Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter. Wat. Sci. Tech., 22, 395–404CrossRefGoogle Scholar
Sipma, J., Lens, P. N. L., Vieira, A.et al. (2000). Thermofilic sulphate reduction in UASB reactors under acidifying conditons. Process Biochem., 35, 509–22CrossRefGoogle Scholar
Sipma, J., Meulepas, R. J. W., Parshina, S. N.et al. (2004). Effect of carbon monoxide, hydrogen and sulphate on thermophilic (55 °C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges. Applied Microbiology and Biotechnology, 64, 421–8CrossRefGoogle ScholarPubMed
Stefess, G. C., Torremans, R. A. M., Schrijver, R., Robertson, L. A. and Kuenen, J. G. (1996). Quantitative measurement of sulphur formation by steady-state and transient-state continuous cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol., 45, 169–75CrossRefGoogle Scholar
Sublette, K. L. and Sylvester, N. D. (1987). Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotech. Bioeng., 29, 753–8CrossRefGoogle ScholarPubMed
Tanimoto, Y., Tasaki, M., Okamura, K., Yamaguchi, M. and Minami, K. (1989). Screening growth inhibitors of sulphate-reducing bacteria and their effects on methane fermentation. J. Ferment. Bioeng., 68, 353–9CrossRefGoogle Scholar
Vallero, M. V. G., Camarero, E., Lettinga, G. and Lens, P. N. L. (2007). Hyperthermophilic sulphate reduction in methanol and formate fed UASB reactors. Appl. Environ. Microbiol. Submitted.
Vallero, M. V. G., Lens, P. N. L., Hulshoff Pol, L. W. and Lettinga, G. (2003a). Effect of NaCl on thermophilic (55 °C) methanol degradation in sulphate reducing reactors. Wat. Res., 37, 2269–80CrossRefGoogle Scholar
Vallero, M. V. G., Paulo, P. L., Trevino, R. H. M., Lettinga, G. and Lens, P. N. L. (2003b). Effect of sulphate on methanol degradation in thermophilic (55 °C) methanogenic UASB reactors. Enzyme Microb. Technol., 32, 676–87CrossRefGoogle Scholar
Heuvel, J. C., Vredenbregt, L. H. J., Portegies-Zwart, I. and Ottengraf, S. P. P. (1995). Acceleration of mass transfer in methane-producing loop reactors. Antonie van Leeuwenhoek, 67, 125–30CrossRefGoogle ScholarPubMed
Houten, R. T., Hulshoff Pol, L. W. and Lettinga, G. (1994). Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotech. Bioeng., 44, 586–94CrossRefGoogle ScholarPubMed
Houten, R. T., Oude Elferink, S. J. W. H., Hamel, S. E.et al. (1995). Sulphate reduction by aggregates of sulphate-reducing bacteria and homo-acetogenic bacteria in a lab-scale gas-lift reactor. Biores. Technol., 54, 73–9CrossRefGoogle Scholar
Houten, R. T., Spoel, H., Aelst, A. C., Hulshoff Pol, L. W. and Lettinga, G. (1996). Biological sulphate reduction using synthesis gas as energy and carbon source. Biotech. Bioeng., 50, 136–443.0.CO;2-N>CrossRefGoogle Scholar
Houten, R. T., Yun, S. Y. and Lettinga, G. (1997). Thermophilic sulphate and sulfite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotech. Bioeng., 55, 807–143.0.CO;2-8>CrossRefGoogle Scholar
Hullebusch, E. D., Zandvoort, M. H. and Lens, P. N. L. (2003). Metal immobilisation in biofilms: mechanisms and analytical tools. Re/view Environ. Sci. Bio/Technol., 2, 9–33CrossRefGoogle Scholar
Hullebusch, E. D., Peerbolte, A., Zandvoort, M. H. and Lens, P. N. L. (2005). Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere, 58, 493–505CrossRefGoogle ScholarPubMed
Hullebusch, E., Zandvoort, M. H. and Lens, P. N. L. (2004). Nickel and cobalt sorption on anaerobic granular sludges: kinetic and equilibrium studies. J. Chem. Technol. Biotechnol., 79, 1219–27CrossRefGoogle Scholar
Lier, J. B., Boersma, F., Debets, M. M. W. H. and Lettinga, G. (1994). High-rate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Wat. Sci. Tech., 30, 251–61CrossRefGoogle Scholar
Veeken, A. H. M., Vries, S.de, Mark, A van der, Rulkens, W. H. (2003). Selective precipitation of heavy metals as controlled by a sulfide-selective electrode. Sep. Sci. Tech., 38, 1–19CrossRefGoogle Scholar
Visser, A., Beeksma, I., Zee, F., Stams, A. J. M. and Lettinga, G. (1993a). Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Appl. Microbiol. Biotechnol., 40, 549–56CrossRefGoogle Scholar
Verstraete, W., Beer, D., Pena, M., Lettinga, G. and Lens, P. (1996). Anaerobic bioprocessing of waste. World J. Microbiol. Biotechnol., 12, 221–38CrossRefGoogle Scholar
Visser, A., Gao, Y. and Lettinga, G. (1992). The anaerobic treatment of a synthetic sulphate containing wastewater under thermophilic (55 °C) conditions. Wat. Sci. Tech., 25, 193–202CrossRefGoogle Scholar
Visser, A., Gao, Y. and Lettinga, G. (1993b). Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulphate containing synthetic wastewater. Wat. Res., 27, 541–50CrossRefGoogle Scholar
Visser, A., Hulshoff Pol, L. W. and Lettinga, G. (1996). Competition of methanogenic and sulfidogenic bacteria. Wat. Sci. Tech., 33, 99–110CrossRefGoogle Scholar
Visser, J. M., Robertson, L. A., Verseveld, H. W. and Kuenen, J. G. (1997). Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl. Environ. Microbiol., 63, 2300–5Google ScholarPubMed
Waybrant, K. R., Blowes, D. W. and Ptacek, C. J. (1998). Selection of reactive mixtures for use in permeable reactive walls for treatment of acid mine drainage. Environ. Sci. Tech., 32, 1972–9CrossRefGoogle Scholar
Weijma, J., Stams, A. J. M., Hulshoff Pol, L. W. and Lettinga, G. (2000). Thermophilic sulphate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng., 67, 354–633.0.CO;2-X>CrossRefGoogle Scholar
Yadav, V. K. and Archer, D. B. (1989). Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high sulphate molasses wastewater. Appl. Microbiol. Biotechnol., 31, 103–6CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×