Book contents
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
9 - Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
Published online by Cambridge University Press: 22 August 2009
- Frontmatter
- Contents
- List of Contributors
- Preface
- 1 Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria
- 2 Molecular strategies for studies of natural populations of sulphate-reducing microorganisms
- 3 Functional genomics of sulphate-reducing prokaryotes
- 4 Evaluation of stress response in sulphate-reducing bacteria through genome analysis
- 5 Response of sulphate-reducing bacteria to oxygen
- 6 Biochemical, proteomic and genetic characterization of oxygen survival mechanisms in sulphate-reducing bacteria of the genus Desulfovibrio
- 7 Biochemical, genetic and genomic characterization of anaerobic electron transport pathways in sulphate-reducing Delta proteobacteria
- 8 Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria
- 9 Anaerobic degradation of hydrocarbons with sulphate as electron acceptor
- 10 Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents
- 11 The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance
- 12 Ecophysiology of sulphate-reducing bacteria in environmental biofilms
- 13 Bioprocess engineering of sulphate reduction for environmental technology
- 14 Bioremediation of metals and metalloids by precipitation and cellular binding
- 15 Enzymatic and genomic studies on the reduction of mercury and selected metallic oxyanions by sulphate-reducing bacteria
- 16 Sulphate-reducing bacteria and their role in corrosion of ferrous materials
- 17 Anaerobic metabolism of nitroaromatic compounds and bioremediation of explosives by sulphate-reducing bacteria
- 18 Sulphate-reducing bacteria and the human large intestine
- Index
- Plate section
- References
Summary
INTRODUCTION
Sulphate-reducing bacteria (SRB), or more generally speaking sulphate-reducing prokaryotes (SRP), are terminal oxidizers in the natural recycling of bio-organic compounds to CO2 in anoxic environments, in particular in marine sediments. SRP play this geochemically important role because they make use of a globally abundant electron acceptor, sulphate (in seawater up to 28 mM), and possess numerous degradative (oxidative) capacities with respect to electron donors. The study of the degradative potentials of SRP via de novo enrichment (including direct counting) and isolation from natural samples has been of interest over some decades and formed the basis for our knowledge of the phylogenetic diversity of SRP. Common electron donors and carbon sources of SRP are the low-molecular mass products from the primary anaerobic (fermentative) breakdown of polysaccharides, proteins, lipids and other substances of dead biomass. Several of the involved degradative capacities, for instance complete oxidation or the channelling of branched-chain fatty acids or aromatic compounds into the central metabolism, require special enzymatic reactions (for overview see Rabus et al., 2000) which are not encountered in fermentative bacteria. The study of such and other metabolic capacities in SRP has led to the recognition of principles of general importance or heuristic value in our understanding of the biochemistry and energetics of anaerobes.
A chemical class of organic substrates which have become of interest relatively recently in the study of SRP (and other anaerobes) are hydrocarbons, in particular those from crude oil (petroleum).
- Type
- Chapter
- Information
- Sulphate-Reducing BacteriaEnvironmental and Engineered Systems, pp. 265 - 304Publisher: Cambridge University PressPrint publication year: 2007
References
- 34
- Cited by