Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T16:46:51.394Z Has data issue: false hasContentIssue false

12 - Monte Carlo radiation transport

Published online by Cambridge University Press:  05 May 2015

Ian H. Hutchinson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Transport and collisions

Consider the passage of uncharged particles through matter. The particles might be neutrons, or photons such as gamma rays. The matter might be solid, liquid, or gas, and contain multiple species with which the particles can interact in different ways. We might be interested in the penetration of the particles into the matter from the source, for example what is the particle flux at a certain place, and we might want to know the extent to which certain types of interaction with the matter have taken place, for example radiation damage or ionization. This sort of problem lends itself to modelling by Monte Carlo methods.

Since the particles are uncharged, they travel in straight lines at constant speed between collisions with the matter. Actually, the technique can be generalized to treat particles that experience significant forces so that their tracks are curved. However, charged particles generally experience many collisions that perturb their velocity only very slightly. Those small-angle collisions are not so easily or efficiently treated by Monte Carlo techniques, so we simplify the treatment by ignoring particle acceleration between collisions.

A particle executes a random walk through the matter, illustrated in Fig. 12.1. It travels a certain distance in a straight line, then collides. After the collision it has a different direction and speed. It takes another step in the new direction, generally with a different distance, to the next collision. Eventually, the particle has an absorbing collision, or leaves the system, or becomes so degraded (for example in energy) that it need no longer be tracked. The walk ends.

12.1.1 Random-walk step length

The length of any of the steps between collisions is random. For any collision process, the average number of collisions a particle has per unit length corresponding to that process, which we'll label j, is njσj, where σj is the cross-section, and nj is the density in the matter of the target species that has collisions of type j.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×