Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T00:45:02.598Z Has data issue: false hasContentIssue false

2 - The numerical simulation of turbulence

Published online by Cambridge University Press:  11 August 2009

Gilles Chabrier
Affiliation:
Ecole Normale Superieure, Lyon
Get access

Summary

Turbulence is a remarkable subject in physics. The underlying equations, which are in their simplest formulation the Euler equations, were published 250 years ago (Euler 1757). Yet a theoretical grasp of the phenomenology emerging from these equations had not been achieved before the mid-twentieth century, when Heisenberg (1923) and Kolmogorov (1941) obtained their first analytical results. Eventually, it took the capabilities of modern supercomputers to obtain a full appreciation of the complexity that is inherent to the Euler equations. Astrophysics is now at the very frontier of numerical turbulence modelling. Among the additional ingredients for making turbulence in astrophysics even more complex are supersonic flow, self-gravity, magnetic fields and radiation transport. In contrast, terrestrial turbulence is mostly incompressible or only weakly compressible. External gravity is, of course, an issue in the computation of atmospheric processes on Earth. Self-gravity, however, is only encountered on large, astrophysical scales. The dynamics of turbulent plasma has met vivid attention in research related to nuclear fusion reactors but, otherwise, is not encountered under terrestrial conditions.

In this chapter, I give an overview of the various approaches towards the numerical modelling of turbulence, particularly, in the interstellar medium (ISM). The discussion is placed in a physical context, i.e. computational problems are motivated from basic physical considerations. Presenting selected examples for solutions to these problems, I introduce the basic ideas of the most commonly used numerical methods. For detailed methodological accounts, the reader is invited to follow the references.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×