Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Basic Structural Concepts
- 3 Symmetry in Crystal Structures
- 4 Crystal Structures
- 5 Diffraction
- 6 Secondary Bonding
- 7 Ionic Bonding
- 8 Metallic Bonding
- 9 Covalent Bonding
- 10 Models for Predicting Phase Stability and Structure
- Appendix 1A Crystal and univalent radii
- Appendix 2A Computing distances using the metric tensor
- Appendix 2B Computing unit cell volumes
- Appendix 2C Computing interplanar spacings
- Appendix 3A The 230 space groups
- Appendix 3B Selected crystal structure data
- Appendix 5A Introduction to Fourier series
- Appendix 5B Coefficients for atomic scattering factors
- Appendix 7A Evaluation of the Madelung constant
- Appendix 7B Ionic radii for halides and chalcogenides
- Appendix 7C Pauling electronegativities
- Appendix 9A Cohesive energies and band gap data
- Appendix 9B Atomic orbitals and the electronic structure of the atom
- Index
1 - Introduction
Published online by Cambridge University Press: 23 February 2011
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Basic Structural Concepts
- 3 Symmetry in Crystal Structures
- 4 Crystal Structures
- 5 Diffraction
- 6 Secondary Bonding
- 7 Ionic Bonding
- 8 Metallic Bonding
- 9 Covalent Bonding
- 10 Models for Predicting Phase Stability and Structure
- Appendix 1A Crystal and univalent radii
- Appendix 2A Computing distances using the metric tensor
- Appendix 2B Computing unit cell volumes
- Appendix 2C Computing interplanar spacings
- Appendix 3A The 230 space groups
- Appendix 3B Selected crystal structure data
- Appendix 5A Introduction to Fourier series
- Appendix 5B Coefficients for atomic scattering factors
- Appendix 7A Evaluation of the Madelung constant
- Appendix 7B Ionic radii for halides and chalcogenides
- Appendix 7C Pauling electronegativities
- Appendix 9A Cohesive energies and band gap data
- Appendix 9B Atomic orbitals and the electronic structure of the atom
- Index
Summary
Introduction
Every active field of scientific investigation has a central, fundamental question that motivates continued research. One way to phrase the motivating question in materials research is: how can elements be combined to produce a solid with specified properties? This is, of course, a complicated question, and it is appropriate to break it up into at least three separate issues. First, when any given elements are combined under some controlled conditions, will they be immiscible, will they dissolve in one another, or will they react to form a compound and, if so, in what atomic ratio? Second, what structure will the product of this combination have and how is it influenced by the processing conditions? While this book deals almost exclusively with the atomic structure of the crystals, it is equally important to be able to specify the defect structure, the microstructure, and the mesoscale structure. Third, given the product phase or phases and the structure (at each length scale), what are the properties of this material? Addressing these fundamental questions in a systematic way requires familiarity with established principles of thermodynamics, kinetics, chemistry, physics, and crystallography. The present book is intended to provide a set of necessary (but not sufficient) skills to conduct materials research. Specifically, the scope of the course encompasses the description of the structure of crystalline matter, the experimental interrogation of crystalline structure, the origin of the cohesive forces that stabilize crystalline structures, and how these cohesive forces vary with the elements in the solid.
- Type
- Chapter
- Information
- Structure and Bonding in Crystalline Materials , pp. 1 - 28Publisher: Cambridge University PressPrint publication year: 2001