Published online by Cambridge University Press: 04 December 2009
Introduction
Structural nanomaterials are finding applications in bulk materials, films, coatings, and composites. Applications vary from wear-resistance coatings to load-bearing structures. Nanophase or nanocrystalline materials are also being used in electronics, refractory, biological, and catalytic applications. Progress in a wide range of structural applications for nanomaterials crucially depends on the development of new fabrication and processing technologies, along with a fundamental understanding of the relationship between the structure and properties of the feedstock powders and consolidated parts. Among the most important issues discussed here are experimental data, and theoretical and computer models concerning mechanical properties in nanostructured materials, which, in general, are different from the conventional coarse-grained counterparts. The competition between conventional and unusual deformation modes is believed to cause the unique mechanical properties of nanomaterials, serving as a basis for their structural applications. Fabrication of nanomaterials with bimodal (nano- and sub-micro-particles) composites, that exhibit both very high strength and reasonable ductility, represents a promising strategy in the synthesis of nanomaterials with enhanced properties for various structural applications. High strain rate and low-temperature superplasticity of some nanocrystalline materials are the subjects of growing fundamental research efforts motivated by a range of new applications of these super strong and super plastic materials in net shaping technologies.
Structural materials and composites containing at least one phase that is less than 100 nm are often termed as structural nanomaterials/composites (Roy et al., 1986).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.