Published online by Cambridge University Press: 24 October 2009
In this chapter, we analyze issues of pooling models for a given set of N individual units observed over T periods of time. When the parameters of the models are different but exhibit some similarity, pooling may lead to a reduction of the mean squared error of the estimates and forecasts. We investigate theoretically and through simulations the conditions that lead to improved performance of forecasts based on pooled estimates. We show that the superiority of pooled forecasts in small samples can deteriorate as the sample size grows. Empirical results for postwar international real gross domestic product growth rates of 18 Organization for Economic Cooperation and Development countries using a model put forward by Garcia-Ferrer, Highfield, Palm, and Zellner and Hong, among others illustrate these findings. When allowing for contemporaneous residual correlation across countries, pooling restrictions and criteria have to be rejected when formally tested, but generalized least squares (GLS)-based pooled forecasts are found to outperform GLS-based individual and ordinary least squares-based pooled and individual forecasts.
Panel data are used more and more frequently in business and economic studies. Sometimes a given number of entities is observed over a longer period of time, whereas traditionally panel data are available for a large and variable number of entities observed for a fixed number of time periods (e.g. see Baltagi 1995 for a[n] … overview; Maddala 1991; Maddala, Trost, and Li 1994).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.