Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
9 - The stereographic net
from Stereographic Projection Techniques for Geologists and Civil Engineers
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Acknowledgements
- Stereographic Projection Techniques for Geologists and Civil Engineers
- 1 Geological structures of planar type
- 2 Measuring and recording the orientation of planar structures
- 3 Geological structures of linear type
- 4 Measuring and recording the orientation of lines
- 5 Why do we need projections?
- 6 Idea of stereographic projection
- 7 Approximate method of plotting lines and planes
- 8 Exercises 1
- 9 The stereographic net
- 10 Precise method for plotting planes. Great circles and poles
- 11 Precise methods for plotting lines 1. Where the plunge of the line is known
- 12 Precise methods for plotting lines 2. Where the line is known from its pitch
- 13 The intersection of two planes
- 14 Plane containing two lines
- 15 Apparent dip
- 16 The angle between two lines
- 17 The angle between two planes
- 18 The plane that bisects the angle between two planes
- 19 Projecting a line onto a plane
- 20 Stereographic and equal-area projections
- 21 The polar net
- 22 Analysing folds 1. Cylindricity and plunge of axis
- 23 Analysing folds 2. Inter-limb angle and axial surface
- 24 Analysing folds 3. Style of folding
- 25 Analysing folds 4. The orientation of folds
- 26 Folds and cleavage
- 27 Analysing folds with cleavage
- 28 Faults 1. Calculating net slip
- 29 Faults 2. Estimating stress directions
- 30 Cones/small circles
- 31 Plotting a cone
- 32 Rotations about a horizontal axis
- 33 Example of rotation about a horizontal axis. Restoration of tilt of beds
- 34 Example of rotation. Restoring palaeocurrents
- 35 Rotation about an inclined axis
- 36 Example of rotation about an inclined axis. Borehole data
- 37 Density contouring on stereograms
- 38 Superposed folding 1
- 39 Superposed folding 2. Sub-area concept
- 40 Example of analysis of folds. Bristol area
- 41 Geometrical analysis of folds. Examples from SW England
- 42 Example of analysis of jointing. Glamorgan coast
- 43 Geotechnical applications. Rock slope stability
- 44 Assessing plane failure. Frictional resistance
- 45 Assessing plane failure. Daylighting
- 46 Assessing wedge failure
- 47 Exercises 2
- 48 Solutions to exercises
- Appendix 1 Stereographic (Wulff) equatorial net
- Appendix 2 Equal-area (Lambert/Schmidt) equatorial net
- Appendix 3 Equal-area polar net
- Appendix 4 Kalsbeek counting net
- Appendix 5 Classification chart for fold orientations
- Appendix 6 Some useful formulae
- Appendix 7 Alternative method of plotting planes and lines
- Availability of computer programs for plotting stereograms
- Further reading
- Index
Summary
The stereograms produced so far have been sketches, sufficient to force us to think about how the projection works but not accurate enough for serious applications.
For geometrical constructions in two dimensions a ruler and protractor are the essential tools. Examples of the constructions are:
(a) drawing the line which passes though two points;
(b) measuring the angle between two co-planar lines;
(c) drawing the line which bisects the angle between two lines.
In three dimensions the equivalent constructions are:
(a) finding the plane which contains two lines;
(b) measuring the angle between two lines or between two planes;
(c) finding the line which bisects the angle between two lines or the plane which bisects the angle between two planes.
The stereographic net (stereonet) is the device used for these constructions. It can be thought of as a spherical protractor and ruler rolled into one. The stereographic or Wulff net is shown in Figure 9c. The net is a reference stereogram consisting of pre-plotted planes. The net in Figure 9c, an equatorial net, shows many plotted great circles representing a family of planes, sharing a common strike but differing in their angle of dip. These planes can be envisaged as those obtained by rotating a protractor (Fig. 9a) along its straight edge (Fig. 9b). The ticks along the protractor's circular edge denote lines spaced at constant intervals within the plane of the protractor.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2004